
IEEE Trans. Neural Networks, vol. 17, 2006 (to appear in July 2006) 1

Motif Discoveries in Unaligned Molecular
Sequences Using Self-Organizing Neural Networks

Derong Liu, Fellow, IEEE, Xiaoxu Xiong, Student Member, IEEE, Bhaskar DasGupta, Senior Member, IEEE, and
Huaguang Zhang, Senior Member, IEEE

Abstract— In this paper, we study the problem of motif dis-
coveries in unaligned DNA and protein sequences. The problem
of motif identification in DNA and protein sequences has been
studied for many years in the literature. Major hurdles at this
point include computational complexity and reliability of the
search algorithms. We propose a self-organizing neural network
structure for solving the problem of motif identification in DNA
and protein sequences. Our network contains several layers with
each layer performing classifications at different levels. The top
layer divides the input space into a small number of regions
and the bottom layer classifies all input patterns into motifs and
non-motif patterns. Depending on the number of input patterns
to be classified, several layers between the top layer and the
bottom layer are needed to perform intermediate classifications.
We maintain a low computational complexity through the use
of the layered structure so that each pattern’s classification is
performed with respect to a small subspace of the whole input
space. Our self-organizing neural network will grow as needed
(e.g., when more motif patterns are classified). It will give the
same amount of attention to each input pattern and it will not
omit any potential motif patterns. Finally, simulation results show
that our algorithm outperforms existing algorithms in certain
aspects. In particular, simulation results show that our algorithm
can identify motifs with more mutations than existing algorithms
and our algorithm works well for long DNA sequences as well.

Index Terms— DNA sequences, motif finding, neural networks,
protein sequences, self-organization, subtle signals.

I. INTRODUCTION

DNA, RNA and proteins are important molecules that
support life on Earth. There are 4 different kinds of nucleotides
(A, C, G and T) that make up the DNA of all the organisms.
These are the four base letters that constitute the alphabets of
DNA. The four base letters of RNA are A, C, G and U , where
the T in DNA is replaced by U in RNA. On the other hand,
proteins of all the organisms are made up of 20 different kinds
of amino acids (letters).

DNA, RNA and protein sequences can be thought of as
being composed of motifs interspersed in relatively uncon-
strained sequence. A motif is a short stretch of a molecule

Manuscript received Oct. 19, 2004; revised Sept. 22, 2005. B. DasGupta
was supported in part by NSF grants CCR-0296041, CCR-0206795, CCR-
0208749 and IIS-0346973.

D. Liu and X. Xiong are with the Department of Electrical and Computer
Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
(email: dliu@ece.uic.edu, xxiong@cil.ece.uic.edu). B. DasGupta is with the
Department of Computer Science, University of Illinois at Chicago, Chicago,
IL 60607, USA (email: dasgupta@cs.uic.edu). H. Zhang is with the School
of Information Science and Engineering, Northeastern University, Shenyang,
Liaoning 110004, P. R. China (email: hgzhang@ieee.org).

Digital Object Identifier 10.1109/TNN.2006.123456

that forms a highly constrained sequence [2]. The expression
of a motif can be in one of the following forms.

1) Use an actual sequence as the description of a motif.
Such a sequence is also called a consensus sequence
[13], [28], [56]. Each position of the consensus se-
quence is the letter that appears most frequently in all
known examples of that motif, e.g., ACTTATAA and
AGTTATAA are two examples of consensus sequence
of a motif.

2) Use a so-called “degenerate” expression to show all
possible letters for each position of a motif [18], [26].
For example, the expression

A − [CG] − T − T − [AC] − [TCG] − A − A (1)

indicates that AGTTCTAA and ACTTAGAA are two
of the possible occurrences; see, for example, [40] for
similar concepts used in the design of degenerate primers
[33].

3) Use a more biologically plausible representation to
describe a motif. In this case, a probability matrix
can be used to assign a different probability to each
possible letter at each position in the motif [4], [5],
[21]. For example, Table I shows a probability matrix
representation of the motif given by (1). This matrix
representation not only gives the possibility of which
letter can appear in each position of the motif, but also
shows the probability of their appearances. For example,
the sixth position of this motif will have letters C, G,
and T appearing with probabilities of 20%, 30%, and
50%, respectively.

TABLE I
FREQUENCY OF EACH LETTER APPEARING IN EVERY POSITION OF A

MOTIF

1 2 3 4 5 6 7 8
A 1.0 0.0 0.0 0.0 0.67 0.0 1.0 1.0
C 0.0 0.5 0.0 0.0 0.33 0.2 0.0 0.0
G 0.0 0.5 0.0 0.0 0.0 0.3 0.0 0.0
T 0.0 0.0 1.0 1.0 0.0 0.5 0.0 0.0

4) Hidden Markov model (HMM) can also be used to
describe motifs [15], [22]. An HMM is obtained by
a slight modification of the Markov model. Based on
HMM algorithm, an output matrix Π can be formed by
the state transition matrix and the probability vector of
A, G, C, and T associated with each state [36], [49].
It is a probabilistic model for motifs when we have

prealigned sequences [55] that are known to share some
common blocks.

Understanding what motifs mean is a major part of research
in bioinformatics. In order to understand motifs, one needs first
to identify and locate them in DNA and protein sequences.
By one way or another, biologists have identified some motifs
[57]. They can explain their structures, common locations and
certain functions. They are usually the beginning of translation
of DNA to protein [44]. A protein binds optimally to places
with some specific patterns (e.g., motifs) and it can still bind
effectively even if one or more positions in the binding site
sequence deviate from its ideal binding site sequence [1],
[23], [34]. This means that a motif may have slightly different
appearances at different locations [41]. The goal of this paper
is to develop algorithms that can identify and locate motifs, if
any, given a set of DNA or protein sequences.

Generally speaking, the motif finding problem in DNA se-
quences can be described as follows: Given a set of unaligned
DNA or protein sequences, project the length of motifs and
locate all motifs with the projected length that these sequences
hold [6]. It is not necessary for all the sequences to have
the same motif. Some sequences may have more than one
repetition of a motif and some motifs may not show up in
every sequence. The appearances of the same motif in the
sequences are not necessarily the same. A subsequence1 is
determined to be a motif if it matches a possible appearance
indicated by (1) or by the matrix representation in Table I.
Obviously, information provided in Table I is more than that
in (1). Here the frequency or probability of letters in each
position of a motif is in [0, 1]. Usually the frequency of the
letter that appeared most frequently should be larger than 40%
[32], [48].

References [16], [35], [45] presented an unsupervised learn-
ing method for finding contiguous motifs. This kind of motifs
has some biological properties of interest such as being
DNA binding sites for a regulatory protein. The work in
[16], [35], [45] showed that unsupervised learning method
is a good approach for dealing with the problem of finding
motifs. An algorithm called MEME is proposed in [2], [3] for
identifying contiguous motifs. This algorithm is an extension
to the expectation maximization algorithm for motif finding.
The Gibbs sampling algorithm [38], [46], [56] uses a Monte
Carlo procedure and it assumes motifs are ungapped sequence
blocks. The algorithm tries to converge to a conserved block if
it exists. Experimental results showed that the Gibbs sampling
method misses motifs when the number of mutations is rela-
tively large [55]. In this paper, we will develop an algorithm
based on a new structure of self-organizing neural networks
[19] and we will compare the performance of our algorithm
with that of [2] and [38]. For motif identification, we will
project the length of motifs as well as the maximum number
of letters that can be mismatched in a pattern [48]. In this
case, the target patterns to be found are described by a given
length and by how many letters that can be mismatched.

1By subsequence we mean a contiguous part of the sequence; this is more
commonly called “substring” in the string matching research community (e.g.,
see [24], [47]).

 Original DNA sequence: GAGAATGCTATTC AGTTCGATCCA
Input pattern #1:

Input pattern #3:
Input pattern #2:

Input pattern #4:

GAGAATG
AGAATGC

GAATGCT
AATGCTA....

Input pattern #W−M+1: CGATCCA

Fig. 1. An illustration on how to obtain input patterns (M = 7) from a
given DNA sequence

Multiple sequence alignment method such as CLUSTALW
[51], ITERALIGN [7] and PROBE [43] can also serve as motif
identification tools. CLUSTALW aligns multiple sequences
by calculating the global similarity among sequences. ITER-
ALIGN and PROBE produce aligned blocks that are separated
by variable-length unaligned segments. Sequence blocks in the
alignment results of these methods can be treated as motif sets
[43]. Usually these methods work on prealigned sequences
and the conserved blocks they find have some limits, such as
that the blocks must be in alignable position and at most one
pattern from each sequence can be included in a motif set.

II. SELF-ORGANIZING NEURAL NETWORKS FOR MOTIF
IDENTIFICATION

A. Subsequences and Encoding

We consider the case where all motifs to be identified from
a given set of DNA or protein sequences have the same length
[42]. In general, the consensus sequence of a motif and the
motif itself are not known a priori and we have to obtain
them by using identification algorithms. What one obtains after
the use of identification algorithms are specific appearances
of a motif, usually with a few mismatched letter positions
comparing to the motif consensus sequence. For a given set
of DNA or protein sequences, in order to identify motifs in
these sequences, we have to specify the maximum number
of letter mismatches that can be tolerated (comparing to the
consensus form) in addition to projecting the length of motifs
to be found.

Test patterns, which we call input sequences or input
patterns [30], can be obtained from the given set of DNA or
protein sequences once the projected length of motifs is given.
Fig. 1 shows a sketch of how input patterns are obtained from a
DNA sequence. In the figure, the projected length of motifs is
M = 7. All subsequences of seven connected letters obtained
using a sliding window (see Fig. 1) from the given DNA or
protein sequences will form the set of input patterns. For a
DNA sequence of length W , we can obtain W −M +1 input
patterns if the projected length of motifs is M .

Letters used in DNA or protein sequences will be encoded
using binary numbers [20]. All letters will be encoded using
binary code with the same length, for example, four for
DNA and RNA sequences and 20 for protein sequences.
Table II shows an example of binary codes designed for DNA
sequences. There are four letters in this case and each letter
is encoded by flipping one bit of the standard code ‘1 1 0 0.’
Letters coded this way will have exactly the same Hamming
distance between any pair of letters [17], [52]. Also, the

2

TABLE II
ENCODER TABLE FOR DNA LETTERS

Standard 1 1 0 0
A 1 1 0 1
C 1 1 1 0
G 1 0 0 0
T 0 1 0 0

scheme shown in Table II can also guarantee that 1’s and 0’s
will appear on average the same number of times. The coding
scheme we used in the present paper is similar to [29] even
though in reality certain pairs of letters may appear closer than
others, e.g., in protein sequences, L and I are more similar
than L and R [50].

B. A New Structure of Self-Organizing Neural Networks

This subsection describes the structure of our self-
organizing neural networks for subtle signal discovery. The
basic structure forms the subnetworks used in our self-
organizing neural networks and contains two layers, i.e., an
input layer and an output layer [8]–[12]. The number of
output neurons of a subnetwork is the same as the number
of categories classified by this subnetwork and the number
of input neurons equals the projected length of motifs. The
input patterns are obtained from the given DNA or protein
sequences by taking all subsequences with the same length as
the length of projected motifs (often in terms of the number
of binary digits after encoding) [54]. Each output neuron
represents a category that has been classified by a subnetwork
and each output category is represented by the connection
weights from all input neurons to the corresponding output
neuron. Subnetworks perform functions of classification in a
hierarchical manner. The first subnetwork is placed at the top
layer and it performs a very rough classification, e.g., divide
the input space into 4–8 categories. The second subnetwork
is placed at the next layer and it usually divides the input
space into 16–32 categories which indicates a slightly more
detailed classification of the input space. The last subnetwork
in our self-organizing neural network will be placed at the
lowest layer and it classifies all the input patterns into either
a motif or a non-motif category with one or a few patterns
[37]. Typically, the number of output neurons will be large for
the last subnetwork and gradually reduced to a small number
for the first subnetwork. Fig. 2 shows the structure of our
self-organizing neural network with three subnetworks. In the
structure shown in the figure, there are four input neurons and
three subnetworks. The first subnetwork has 3 output neurons,
the second subnetwork has 5 output neurons, and the third
subnetwork has 10 output neurons. Each of the output neurons
represents a category that has been created and it is represented
by the connection weights to the output neuron. The output
category α of the first subnetwork contains two patterns (a
and b), the output category β contains two patterns (c and
d), and the output category γ contains one pattern (e). The
output category a of the second subnetwork contains three
patterns (1, 2, and 3), the output category b contains one
pattern (4), the output category c contains two patterns (5

6rvkmmmmmlllssssss uu

Input neurons

α β γ

a b e 2nd subnetwork

1st subnetwork

1 2
10

3r
d

su
bn

et
w

or
k

Input patterns

c d

nnnntt

Fig. 2. Structure of the present self-organizing neural network

and 6), the output category d contains two patterns (7 and 8),
and the output category e contains two patterns (9 and 10).
The output categories 1, 2, 4 and 7 of the third subnetwork
represent motifs while categories 3, 5, 6, 8–10 are not motifs
(if we desire to have at least three appearances for each motif
identified).

We can also illustrate the structure in Fig. 2 using a tree of
sorting bins as shown in Fig. 3. In the figure, there are sorting
bins at each level of the tree. From one level down to the
next, the number of bins increases. At the lowest level, bins
will be divided into motifs and non-motif categories. Fig. 3
also shows an example of how a new input pattern is sorted
into a category. The new input pattern is first sorted by the bin
at the top level. Then it is distributed to a suitable bin at the
next level, and this process continues until the pattern reaches
the lowest level where it is classified into a motif category
or a non-motif category. By using the present neural network
structure, the identification of motifs can be completed in one
cycle of sorting (presenting all input patterns to the network).
Multiple categories (at the lowest level) as shown in Fig. 3
will be generated in one cycle. On the other hand, existing
methods for motif discoveries, such as MEME and Gibbs
sampling methods, only sort the input patterns in each cycle
into two groups: a motif category and a group containing all
other patterns, as shown in Fig. 4. Using these algorithms,
multiple trials will have to be employed so that multiple motifs
can be discovered.

C. Rules for Weight Update and Output Node Creation

When an input pattern is applied to our self-organizing
neural network, it will be classified to an output category
by every subnetwork. An output category of a lower layer
subnetwork is said to belong to an output category of a higher
layer subnetwork if one or more input patterns are classified to
belong to these two output categories. The connection weights
for each category of the last subnetwork (at the lowest layer)

3

p 6mmmmmuulllssssss k v

a b c d

α β γ

98654321 7 10

e

nnnntt

Sorting bin

n

Fig. 3. Sorting strategy of the self-organizing neural network method

ssssss vp6uulll

Sorting bin

1 motif all others

mmmmmttknnnn

Fig. 4. Sorting strategy of the MEME and Gibbs methods

are calculated as the center of the category, i.e., the geometric
center of all input patterns that are currently classified into
the category associated with the corresponding output neuron.
The connection weights for an output category of all other
subnetworks (except the last subnetwork) are calculated as
the geometric center of all categories from the lower layer
subnetwork that belongs to this category.

When a new input pattern is applied to a subnetwork,
its classification to an output category of every subnetwork
involves the following two steps.

1) The distance between the input pattern and each output
category is calculated by comparing the input pattern
with the connection weights from the input neurons
to that category. The minimum of these distances is
determined and thus a winning category is also deter-
mined. This step works similarly to the winner-take-
all networks [25]. These winning neurons form the tree
of classification as in Fig. 2. For the example network
shown in Fig. 2, an input pattern will be first compared
to the three categories {α}, {β} and {γ} at the first

layer. At the next layer, it will be either compared to
{a, b}, {c, d} or {e} depending on which of the three
output categories at the first layer becomes the winning
category.

2) Within the winning category, the similarity of all patterns
in this category including the new pattern will be calcu-
lated and compared to a threshold value. If the similarity
value is less than the threshold, the new pattern will be
classified into the winning category. Otherwise, the new
pattern cannot be classified into the winning category.

Assume that there are a total of L subnetworks for l =
1, 2, · · · , L. Assume that there are M input neurons and the
lth subnetwork has Nl output neurons. The input patterns
obtained from the given DNA or protein sequences are used
as motif candidates and are provided to each subnetwork of
our self-organizing neural network. The outputs of the last
subnetwork correspond to classifications of all input patterns
into motifs and non-motif categories. The projected length of
motifs possibly existing in the input sequences is the same as
M .

We denote the input patterns as xi, i = 1, 2, · · · . Suppose
that t input patterns have been presented to the network and
have been classified. When a new input pattern, i.e., the
(t + 1)st pattern xt+1, is introduced to the lth subnetwork,
the distances from the new input pattern to those categories
of the lth subnetwork that belong to the (l − 1)st winning
category W l−1

q is calculated as

yl
n =

M
∑

m=1

|xt+1
m − wl

mn|, for n ∈ W l−1
q

where xt+1
m is the mth component of the input pattern xt+1

and wl
mn is the connection weight of the lth subnetwork

from the mth input neuron to the nth output neuron after the
presentation of the tth input pattern. Denote

yl
q = min

n∈W
l−1

q

{yl
n}

i.e., the qth output category of the lth subnetwork is the
winning category that has the smallest distance to the new
input pattern. Assume that the qth output category of the lth
subnetwork contains pl

q patterns from the (l+1)st subnetwork.
Within this winning category q, we will calculate the similarity
value of all the pl

q +1 patterns including the new input pattern.
The similarity value of a group of patterns is calculated as the
maximum of the pairwise distance [27] between all pairs of
patterns in the group.

For the winning category q determined above, we calculate
the distances from the new input pattern to all other patterns
in the category as

dl
j =

M
∑

m=1

∣

∣xt+1
m − el+1

mj

∣

∣ , j = 1, 2, · · · , pq,

where

el+1

mj =















xj
m, if l = L and xj

m belongs to the
category q of the (l − 1)st layer

wl+1

mj , if 1 ≤ l < L and wl+1

mj belongs
to the category q of the lth layer.

(2)

4

We then perform the following threshold tests. If

max
1≤j≤pq

{dl
j} < ρl (3)

then this new input pattern will be classified into the category
q of the lth subnetwork. Otherwise, the new input pattern
cannot be classified into any existing category at this layer.
The threshold value ρl in (3) will be determined later and it
takes different values for different subnetworks. We note that
all pairwise distances in this category will be less than the
threshold ρl if (3) is satisfied for the new input pattern since
all other patterns are previously classified into this category
using the same threshold test.

We describe in the following some more details about our
calculation procedure.

a) We start from the top layer, i.e., the first subnetwork,
and work down the layers one by one, when classifying
a new input pattern. After a winning category has been
determined at the lth layer, the input pattern will only
be compared to those patterns at the (l + 1)st layer that
are classified to belong to the winning category at the
lth layer and the winning category is denoted by W l

q .
b) If the threshold tests in (3) are successful for l =

1, 2, · · · , L, we perform the following updates for the
Lth subnetwork:

wL
mq : =

1

pL
q + 1

pL
q +1
∑

j=1

xj
m

=
1

pL
q + 1

[

pL
q × wL

mq + xt+1
m

]

,

m = 1, 2, · · · ,M,

pL
q : = pL

q + 1,

where xpL
q +1 indicates the new input pattern xt+1 for

convenience. We perform the following updates for the
rest of subnetworks:

wl
mq :=

1

pl
q

pl
q

∑

j=1

wl+1

mj ,

m = 1, 2, · · · ,M, l = L − 1, L − 2, · · · , 2, 1.

c) If the threshold tests in (3) are successful for l =
1, 2, · · · , L1, where L1 < L, we will add an output
neuron to subnetworks L1 + 1, L1 + 2, · · · , L. Each
of these newly added categories will contain only one
pattern and the weights of the new categories are chosen
as

wl
mn = xt+1

m ,

m = 1, 2, · · · ,M, n = Nl + 1,

l = L1 + 1, L1 + 2, · · · , L.

We also update the number of output neurons for these
subnetworks as

Nl := Nl + 1, pl
Nl

= 1, l = L1 + 1, L1 + 2, · · · , L.

In this case, it is not necessary to perform threshold
tests for subnetworks L1+1, L1+2, · · · , L anymore. For

subnetworks 1, 2, · · · , L1, we will perform the following
updates:

pL1

q := pL1

q + 1

wl
mq :=

1

pl
q

pl
q

∑

j=1

wl+1

mj ,

m = 1, 2, · · · ,M, l = L1, L1 − 1, · · · , 2, 1.

D. Order Randomization and Recycling of Input Patterns

After one cycle of the motif identification procedure, our
neural network is able to identify most of the patterns be-
longing to some motifs. However, there might still be some
missing ones. That is because that the classification of an input
pattern to a category using the present self-organizing neural
network will be affected by the order in which input patterns
are presented to the network. The new input pattern will only
be tested in existing categories in the network. If the pairwise
test wins in an earlier category, the pattern will not be included
in categories built later. Fig. 5(a) shows a case where an input
pattern is placed in a non-motif category A (e.g., a category
with less than two members). After that, the same pattern may
not be considered to belong to a motif category B that is
created after. In Fig. 5(b), the same input pattern is classified
to the motif category B since in this case the category B is
created before A.

B

Classified into a strong categoryClassified into a weak category

B

(b)(a)

A

CC

A

Fig. 5. (a) A new input pattern fails to be classified into category B. (b) The
classification succeeded in a different trial.

To avoid the problem shown in Fig. 5(a), we use the
following procedure. After the first trial, we keep all motif cat-
egories and recycle all input patterns in non-motif categories to
determine whether we have misclassified any patterns during
the first trial. (1) Initial trial: We randomly select the order
of presentation of all input patterns, and run our algorithm to
identify motif categories. (2) Recycling input patterns: Keep
all motif categories including all patterns belonging to these
categories, remove all non-motif categories, randomly select
the order of presentation of input patterns from non-motif
categories, and run our algorithm. After the second trial with
recycled input patterns, the problem shown in Fig. 5(a), if any,
will be resolved. Thus, it is likely some motif categories will
get new members to join. It is also likely that some more motif
categories will be created.

In our simulation studies, we have used 3 as the threshold
to determine whether a category is a motif or not, i.e., if a

5

category contains three members or more, it is classified as a
motif category and otherwise, it is not. Our simulation results
also indicate that two trials are enough to identify all motif
categories since additional trials have not produced anything
new.

III. SIMULATION RESULTS

We will compare our algorithm with existing algorithms
in the present simulation studies. We will use both randomly
generated and real DNA sequences to test our algorithm. In
each example, input patterns to our self-organizing neural
network will be obtained from DNA or protein sequences as
described in Section 2.1.

OTC2_ECOLI SDLYKKHFLKLLDFTPAQFTSLLTLAAQLKADKKNGKEVQKLTGKNIALIFEKDSTRTRCSFEVAAFDQGARVTYL
OTC1_PSESH NARHFLSMMDYTPDELLGLIRRGVELKDLRIRGELFEPLKNRVLGMIFEKSSTRTRLSFEAGMIQLGGQAIFLSHR
OTC1_ECOLI SGFYHKHFLKLLDFTPAELNSLLQLAAKLKADKKSGKEEAKLTGKNIALIFEKDSTRTRCSFEVAAYDQGARVTYL
OTC1_LACLA MFQGRSFLKEIDFSKDELLYLIDFAIHLKKLKKEHIQHKYLLDKNIALIFEKTSTRTRAAFTTAAVDLGAHPEFLG
OTC2_LACLA MVTTNKRDFITTEDYTKEEILDIVTLGLKIKAAIKNGYYPPLLKNKSLGMIFQQTSTRTRVSFETAMTQLGGHAEY
OTC2_PSESF KITSLKNRNLLTMNEFNQSELSHLIDRAIECKRLKKDRIFNLGLNHLNICGIFLKPSGRTSTSFVVASYDEGAHFQ
OTC_BACAN MSTVQVPKLNTKDLLTLEELTQEEIISLIEFAIYLKKNKQEPLLQGKILGLIFDKHSTRTRVSFEAGMVQLGGHGM
OTC_ANASP MAALLGRDLLSLADLTPTELQELLQLATQLKSQQLKLRCNKVLGLLFSKASTRTRVSFTVAMYQLGGQVIDLNPNV
OTC_AQUAE MKRDFVDLWDLSPKEAWEIVKKTLKVKKGEEELGKPLSGKTIALLFTKPSTRTRVSFEVGIYQLGGNSLFFQEKEL

OTC2_ECOLI GPSGSQIGHKESIKDTARVLGRMYDGIQYRGHGQEVVETLAQYAGVPVWNGLTNEFHPTQLLADLMTMQEHLPGKA
OTC1_PSESH DTQLGRGEPIADSAKVMSRMLDAVMIRTYAHSNLTEFAANSRVPVINGLSDDLHPCQLLADMQTFLEHRGSIKGKT
OTC1_ECOLI GPSGSQIGHKESIKDTARVLGRMYDGIQYRGYGQEIVETLAEYASVPVWNGLTNEFHPTQLLADLLTMQEHLPGKA
OTC1_LACLA PNDIQLGKKESISDTAKVLGSMFDGIEFRGFKQSDVEILAKDSGRPVWNGLTDVWHPTQMLADFMTIKEHFGHLQD
OTC2_LACLA LAPGQIQLGGHETIEDTSTVLSRLLDIIMARVDRHESVNNLAKHTTIPVLNGMSDYNHPTQEVGDLTTMIEHLPAG
OTC2_PSESF FFPADNIRFGHKESIKDFARVVGRLFDGIAFRGFEHEVAEELAKHSGIPVWNALTDTHHPTQVLADVMTVKEEFGR
OTC_BACAN FLNGKEMQMGRGETVSDTAKVLSHYIDGIMIRTFSHADVEELAKESSIPVINGLTDDHHPCQALADLMTIYEETNT
OTC_ANASP TQVSRGEPVQDTARVLERYLDVLAIRTFEQQELATFAEYAKIPVINALTDLEHPCQILADLLTVQECFDSISGLTL
OTC_AQUAE QVSRGEDVRDTARTLSKYVDGVIVRNHSHTWLKEFANFASVPVINALTNMSHPCQILSDVFTLYEHYGEELKNLKV

OTC2_ECOLI FNEMTLVYAGDARNNMGNSMLEAAALTGLDLRLLAPKACWPEESLVAECSALAEKHGGKITLTEDVAAGVKGADFI
OTC1_PSESH VAWIGDGNNMCNSYIEAAIQFDFQLRVACPAGYEPNPEFLALAGERVTIVRDPKAAVAGAHLVSTDVWTSMGQEEE
OTC1_ECOLI FNEMTLVYAGDARNNMGNSMLEAAALTGLDLRLVAPQACWPEAALVTECRALAQQNGGNITLTEDVAKGVEGADFI
OTC1_LACLA LTLAYVGDGRNNVANSLLVTGAILGVNITIISPESLQPALEIQKLARKYAMKSRSKISIRTDLNGLENADIVYTDV
OTC2_LACLA KKLEDCKVVFVGDATQVCFSLGLIATKMGMHFVHFGPKGYQLNEEHQAKLAANCEVSGGTYEVTDDEESIVGADFL
OTC2_PSESF IEGVTIAYVGDGRNNMVTSLAIGALKFGYNLRIIAPNALHPTDAVLAGIYEQTPERNGSIEIFTEVAAGVHQADVI
OTC_BACAN FKGIKLAYVGDGNNVCHSLLLASAKVGMHMTVATPVGYKPNEEIVKKALAIAKETGAEIEILHNPELAVNEADFIY

OTC_AQUAE AYVGDGNNVCNTLMVGAGMFGLKLFVATPEGYEPNSYYYKKALEFSKENGGSVELTNNPVESVKDADVVYTDVWVS

OTC2_ECOLI YTDVWVSMGEAKEKWAERIALLRGYQVNAQMMALTDNPNVKFLHCLPAFHDDQTTLGKQMAKEFDLHGGMEVTDEV
OTC1_PSESH TARRMALFAPFQVTRASLDLAEKDVLFMHCLPAHRGEEISVDLLDDSRSVAWDQAENRLHAQKALLEFLVAPSHQR
OTC1_ECOLI YTDVWVSMGEAKEKWAERIALLREYQVNSKMMQLTGNPEVKFLHCLPAFHDDQTTLGKKMAEEFGLHGGMEVTDEV
OTC1_LACLA WVSMGEEAQTAKRIKLLKSYQINQKVVEKIINKNFIFMHCLPSFHDLNTEVMKEIKENYNLNELEVTDEVFNSKNS
OTC2_LACLA YTDVWYGLYDAELSEEERLAIFFPKYQVTPEMMAKAGAHTKFMHCLPASRGEEVVDAVIDGPNSICFDEAENRLTS
OTC2_PSESF YTDVWISMGESVSVEERIALLKPYKVTEKMMALTGKADTIFMHCLPAFHDLDTEVARETPDLVEVEDSVFEGPQSR
OTC_BACAN TDVWMSMGQEGEEEKYTLFQPYQINKELVKHAKQTYHFLHCLPAHREEEVTGEIIDGPQSIVFEQAGNRLHAQKAL
OTC_ANASP GQEAEADDRFPIFQPYQISEQLLSLAEPNAIVLHCLPAHRGEEITEEVIEGSQSRVWQQAENRLHVQKALLASILG
OTC_AQUAE MGEENKNIEAFLPYQVNEKLLSFAKSSVKVMHCLPAKKGQEITEEVFEKNADFIFTQAENRLHTQKTLMEFLFREP

OTC2_ECOLI FESAASIVFDQAENRMHTIKAVMMATLGE
OTC1_PSESH A
OTC1_ECOLI FESAASIVFDQAENRMHTIKAVMVATLSK
OTC1_LACLA VVFEQAENRMHTIKEVMAATLGDLFIPKI
OTC2_LACLA IRALLVWLMSDYAEKNPYDLKAQAKAKAELEAYLAK
OTC2_PSESF VFDQGENRMHTIKALMLETVVP
OTC_BACAN LVSLFKNVEELS
OTC_ANASP AE
OTC_AQUAE QA

Motif consensus form:

Motif 4: WNGLTDDHHPTQLLADL Motif 8: VKFMHCLPAFHDDETTE

Motif 3: QFGHKESIKDTARVLGR Motif 7: EEEKRIALFRPYQVNKK

Motif 1: PDELLHLIDRAIELKRL Motif 5: GLTLAYVGDGRNNMNNS

Motif 2: NKNIGLIFEKPSTRTRV Motif 6: KGADVIYTDVWVSMGEE

OTC_ANASP TYVGDGNNVANSLMLGCALAGMNVRIATPSGYEPNPQVVAQAQAIADGKTEILLTNDPDLATKGASVLYTDVWASM

 153

 1

 77

 305

 229

Fig. 6. The motif discovery results in OTCase family proteins

Example 1: In this example, we will apply our algorithm
to motif discoveries in Ornithine Carbamoyltransferase fam-
ily protein sequences (OTCase family). We choose 9 OTC
samples from SwissProt gene library. The lengths of these
sequences are between 305 and 340 letters. The average length
is 322. We project the length of the target motif to be 17 and
the maximum number of mismatched letters to be 4. A total of
2754 input patterns are obtained from the 9 protein sequences.
We choose to use three levels of subnetworks with one output
neuron initially at each level. After the presentation of all input
patterns in random order to the network, we obtain 8 motif sets
each has at least 5 appearances. Results are shown in Fig. 6.
The motif sets are marked with different underlines or blocks.
The consensus forms of the motif sets are used to summarize

6

TABLE III
COMPARISON OF THE MOTIF SETS FROM SELF-ORGANIZING NEURAL

NETWORK METHOD AND MEME METHOD, NOS = NUMBER OF SAMPLES

IN THE MOTIF SET.

ID
Our Result MEME Result

Consensus NOS Consensus NOS
1 GTACAGTTTGTTTATAC 9 GTACAGTTTGTTTATAC 9
2 ACCTTCCACTCAGGATG 11 ACCTTCCACTCAGGATG 11
3 CAAAAGAACAATAATCA 8 CAACATATTCATAGTCT 7
4 CACAGAGGCACCAATTT 7 CACACCCCGAGCATTCT 6
5 CTTCTTGGAATCCTCTG 7 CTTCTTGGAATCCTCTG 7
6 TTCTAATATTTATTGCT 7 TTCTAATATTTATTGCT 4
7 TGGACTTGGAACCTATA 7 GACTCGCAACCTACAAA 4
8 AGCTTTCTGAATAAAAG 7 ACTTTCTGAATAAAAGA 6
9 TACAATAACAATACCTT 7 TACAGGAAAGATACCTT 5

10 GGTGAGTCTGTGCATTT 7 AATGAGTCTGTGCATAT 7
11 TTCCAATACATTAATAT 7 CCCTTTTCTCTACATTT 7
12 CCATCGATCGAACGATT 7 CGATCAATCGAACGATT 4
13 CCCCCACCTCTCATCAG 7 CATCTCCCATCAGTCAT 4
14 ACTTTCTGAATAAAAGA 6 GACAATCAAAGGAAACA 5
15 GGGTTCGGCAGATGTTT 6 GGGTGGGGCAGTTGTTT 4
16 TTTGTGGTTCAAAATAT 13
17 AGGAATTTAAAACAAAT 11
18 AATAATAAAGTAAAAAA 11
19 ATATTTTTTTTCTTCAG 10
20 ACCTTTCGGATAAAACC 6

the results.

Example 2: In this example, we will test our algorithm
on a group of DNA sequences that share strong and weak
motifs [31], [39]. The target samples are ancient conserved
untranslated sequences (ACUTS). The DNA samples are ob-
tained from the ACUTS database [58]. The ACUTS DNA
sequences are usually used in identifying new regulatory
elements in untranslated regions of protein-coding genes [14].
We pick the ACTAC 3UT entries which included 7 pieces of
sequences. The lengths of the sequences are between 98 and
1866 residues and the average length is 525. The projected
length of target motifs is 17 and the maximum number of
mismatched letters is 6. A total of 3225 input patterns are
obtained from the 7 DNA sequences. After applying the input
patterns to our neural network, we obtain a total of 20 motif
sets. In order to compare our algorithm with MEME method,
we apply the same DNA sequences to the MEME online
server (http://meme.sdsc.edu/meme/website/meme.html). The
MEME method finds 15 motif sets. Table III shows a com-
parison between the motif sets we found and MEME results.
In the table we list the consensus sequence of each motif set
obtained by both self-organizing neural network method and
MEME method. We list the number of patterns that are found
for each motif set. The first 15 motif sets are those found
by both our algorithm and MEME method. Compared with
MEME method, our algorithm finds more patterns for most of
these motif sets. Motif sets 16 to 20 are found by our method
only.

Example 3: In this example, following [53], we generate
i.i.d. samples of DNA sequences with certain lengths. Motifs
with random mismatch letters at randomly chosen positions
are implanted in these sequences. The performance of the

algorithm is defined as follows:

Perf =
|R ∩ T |

|R ∪ T |
(4)

where R is the motif set generated, T is the motif set identified,
and | · | indicates the cardinality of a set. The numerator of the
performance represents the number of motifs we found that
are really motifs. The denominator represents the whole set of
any motifs that are generated or found. In the figures shown
in this example, the horizontal axis represents the percentage
of mismatch of the motifs (i.e., ε/M , where ε is the number
of letters that is tolerable as the representation of a motif),
and the vertical axis indicates the performance averaged over
8 such simulations. A result that is closer to 1 implies a better
performance.

Fig. 7 to 9 show the performance of the system on finding
motifs of lengths 13, 15 and 17. From the figures we can
see that the using the present self-organizing neural network,
results are still acceptable even with the mismatch letters up
to 30%. After that, the performance drops sharply. The reason
of the sharp drop is that for the 4 letter DNA case, the total
number of randomly generated sequences is not large enough,
which makes the generated patterns to be often similar to
noise. Comparing to the results obtained using MEME in [2]
and using Gibbs in [38], our simulation results can find motifs
with at least one more mismatch letter than the other two
algorithms. For example, for motif length of 15, our algorithm
achieved 100% performance (i.e., identified all motifs) when
there are four letter mismatches allowed, while MEME and
Gibbs algorithms both achieved less than 20% performance.
We can conclude that in this aspect our algorithm outperforms
the MEME and Gibbs algorithms. In this simulation example,
we generated 10 DNA sequences with 200 letters in each
sequence. The computation time of our algorithm is 3 minutes
on a SUN Ultra 60 workstation. Compared with MEME (15
minutes) and Gibbs (12 minutes), our algorithm demands less
computation time.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of mismatches

P
er

fo
rm

an
ce

s

Motif length = 13

Our algorithm
MEME
Gibbs

Fig. 7. Comparison results for motif length = 13

7

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of mismatches

P
er

fo
rm

an
ce

s
Motif length = 15

Our algorithm
MEME
Gibbs

Fig. 8. Comparison results for motif length = 15

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of mismatches

P
er

fo
rm

an
ce

s

Motif length = 17

Our algorithm
MEME
Gibbs

Fig. 9. Comparison results for motif length =17

Example 4: In this example, we study the performance of
our algorithm with respect to protein sequences. We use the
same strategy as defined in the last example. We generate i.i.d
samples of protein sequences and certain number of protein
motifs with mismatch letters. Fig. 10 shows performances of
our algorithm for both DNA and protein sequences. The length
of the motif patterns in both cases is chosen as 15. We can see
that the performance of our algorithm for protein sequences is
better than that for DNA sequences. One reason for this im-
proved performance is the large number of random sequences
that can be generated in the case of protein sequences due to
large alphabet.

Example 5: Existing algorithms such as MEME and Gibbs
do not perform well for long DNA sequences. Based on the
work in [48], the performances of these two algorithms are
not good enough when the length of the sequence hits 500.
In this example, we make a comparison for performance of
motif identification using long DNA sequences. In the present

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of mismatches

P
er

fo
rm

an
ce

s

Motif length = 15

Our algorithm on DNA sequences
Our algorithm on protein sequences

Fig. 10. Comparison results for DNA and protein sequences with motif
length = 15

example, we generate 20 DNA sequences each with length
of 1000. A total of 30 patterns of (15, 4) are implanted at
random locations in these sequences, where 15 indicates the
motif length and 4 represent the tolerable number of mismatch
letters. We perform a total of 8 simulation runs. The average
performance of our algorithm of the 8 runs is 90%. Compared
with MEME (0.00) and Gibbs (12%), we can see that our
algorithm significantly outperforms both the MEME and Gibbs
algorithms for long DNA sequences.

IV. CONCLUSIONS

In this paper, we studied the problem of motif discoveries in
unaligned DNA and protein sequences. We developed a self-
organizing neural network structure for solving the problem
of motif identification in DNA and protein sequences. Our
network contains several layers with each layer performing
classifications at different level. We maintain a low computa-
tional complexity through the use of the layered structure so
that each pattern’s classification is performed with respect to a
small subspace of the whole input space. We also maintain a
high reliability using our self-organizing neural network since
it will grow as needed to make sure that all input patterns are
considered and are given the same amount of attention. Sim-
ulation results show that our algorithm outperforms existing
algorithms MEME and Gibbs in certain aspects. Our algorithm
works well for long DNA sequences as well.

REFERENCES

[1] T. L. Bailey and C. Elkan, “The value of prior knowledge in discovering
motifs with MEME,” Proc. 3rd International Conference on Intelligent
Systems for Molecular Biology, Cambridge, UK, July 1995, pp. 21–29.

[2] T. L. Bailey and C. Elkan, “Unsupervised learning of multiple motifs in
biopolymers using expectation maximization,” Machine Learning, vol.
21, no. 1–2, pp. 51–83, Oct./Nov. 1995.

[3] T. L. Bailey and M. Gribskov, “Combining evidence using p-values:
Application to sequence homology searches,” Bioinformatics, vol. 14,
no. 1, pp. 48–54, Feb. 1998.

8

[4] A. Basu, P. Chaudhuri, and P. P. Majumder, “Identification of polymor-
phic motifs using probabilistic search algorithms,” Genome Research,
vol. 15, no. 1, pp. 67–77, Jan. 2005.

[5] K. Blekas, D. I. Fotiadis, and A. Likas, “A sequential method for
discovering probabilistic motifs in proteins,” Methods of Information
in Medicine, vol. 43, no. 1, pp. 9–12, 2004.

[6] M. Boden and J. Hawkins, “Improved access to sequential motifs: a note
on the architectural bias of recurrent networks,” IEEE Transactions on
Neural Networks, vol. 16, no. 2, pp. 491–494, Mar. 2005.

[7] L. Brocchieri and S. Karlin, “A symmetric-iterated multiple alignment of
protein sequences,” J. Molecular Biology, vol. 276, no. 1, pp. 249–264,
Feb. 1998.

[8] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for
a self-organizing neural pattern-recognition machine,” Computer Vision,
Graphics, and Image Processing, vol. 37, no. 1, pp. 54–115, Jan. 1987.

[9] G. A. Carpenter and S. Grossberg, “Search mechanisms for adaptive
resonance theory (ART) architectures,” Proc. International Joint Confer-
ence on Neural Networks, Washington, DC, June 1989, vol. 1, pp. 210–
205.

[10] G. A. Carpenter and S. Grossberg, “ART-3: Hierarchical search using
chemical transmitters in self-organizing pattern-recognition architec-
tures,” Neural Networks, vol. 3, no. 2, pp. 129–152, Mar. 1990.

[11] G. A. Carpenter and S. Grossberg, “A self-organizing neural network for
supervised learning, recognition, and prediction,” IEEE Communications
Magazine, vol. 30, no. 9, pp. 38–49, Sept. 1992.

[12] G. A. Carpenter, S. Grossberg, and D. Rosen, “ART 2-A: An adaptive
resonance algorithm for rapid category learning and recognition,” Proc.
International Joint Conference on Neural Networks, Seattle, WA, July
1991, vol. 2, pp. 151–156.

[13] B. C. H. Chang, A. Ratnaweera, S. K. Halgamuge, and H. C. Watson,
“Particle swarm optimisation for protein motif discovery,” Genetic
Programming and Evolvable Machines, vol. 5, no. 2, pp. 203–214, June
2004.

[14] L. Duret and P. Bucher, “Searching for regulatory elements in human
noncoding sequences,” Current Opinion in Structural Biology, vol. 7,
no. 3, pp. 399–406, June 1997.

[15] S. R. Eddy, “Profile hidden Markov models,” Bioinformatics, vol. 14,
no. 9, pp. 755–763, Oct. 1998.

[16] O. Emanuelsson, H. Nielsen, and G. von Heijne, “ChloroP, A neural
network-based method for predicting chloroplast transit peptides and
their cleavage sites,” Protein Science, vol. 8, no. 5, pp. 978–984, May
1999.

[17] D. Frishman and P. Argos, “A neural network for recognizing distantly
related protein sequences,” in Handbook of Neural Computation, E.
Fiesler and R. Beale, Eds., New York: IOP Publishing and Oxford
University Press, pp. G4.4:1–8, 1997.

[18] M. C. Frith, Y. Fu, L. Yu, J. F. Chen, U. Hansen, and Z. Weng,
“Detection of functional DNA motifs via statistical over-representation,”
Nucleic Acids Research, vol. 32, no. 4, pp. 1372–1381, Feb. 2004.

[19] Y. Gdalyahu, D. Weinshall, and M. Werman, “Self-organization in vi-
sion: Stochastic clustering for image segmentation, perceptual grouping,
and image database organization,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 10, pp. 1053–1074, Oct. 2001.

[20] S. Geva and J. Sitte, “Adaptive nearest neighbor pattern classification,”
IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 318–322, Mar.
1991.

[21] P. Gonnet and F. Lisacek, “Probabilistic alignment of motifs with
sequences,” Bioinformatics, vol. 18, no. 8, pp. 1091–1101, Aug. 2002.

[22] W. N. Grundy, T. L. Bailey, C. P. Elkan, and M. E. Baker, “Meta-MEME:
Motif-based hidden Markov models of protein families,” Computer
Applications in the Biosciences, vol. 13, no. 4, pp. 397–406, Aug. 1997.

[23] K. Gulukota, J. Sidney, A. Sette, and C. DeLisi, “Two complementary
methods for predicting peptides binding major histocompatibility com-
plex molecules,” J. Molecular Biology, vol. 267, no. 5, pp. 1258–1267
Apr. 1997.

[24] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology, New York: Cambridge University
Press, 1997.

[25] S. Haykin, Neural Networks: A Comprehensive Foundation, Upper
Saddle River, NJ: Prentice Hall, pp. 443–483, 1999.

[26] G. Z. Hertz and G. D. Stormo, “Identifying DNA and protein patterns
with statistically significant alignments of multiple sequences,” Bioin-
formatics, vol. 15, no. 7/8, pp. 563–577, July/Aug. 1999.

[27] T. Hofmann and J. M. Buhmann, “Pairwise data clustering by determin-
istic annealing,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 19, no. 1, pp. 1–14, Jan. 1997.

[28] S. T. Jensen and J. S. Liu, “BioOptimizer: A Bayesian scoring function
approach to motif discovery,” Bioinformatics, vol. 20, no. 10, pp. 1557–
1564, July 2004.

[29] E. Jeong, I. F. Chung, and S. Miyano, “A neural network method
for identification of RNA-interacting residues in protein,” Proc. 15th
International Conference on Genome Informatics, Yokohama, Japan,
Dec. 2004, pp. 105–116.

[30] F. Kanaya and S. Miyake, “Bayes statistical behavior and valid gener-
alization of pattern classifying neural networks,” IEEE Transactions on
Neural Networks, vol. 2, no. 4, pp. 471–475, July 1991.

[31] U. Keich and P. A. Pevzner, “Finding motifs in the twilight zone,”
Bioinformatics, vol. 18, no. 10, pp. 1374–1381, Oct. 2002.

[32] U. Keich and P. A. Pevzner, “Subtle motifs: Defining the limits of motif
finding algorithms,” Bioinformatics, vol. 18, no. 10, pp. 1382–1390, Oct.
2002.

[33] S. Keles, M. J. van der Laan, and C. Vulpe, “Regulatory motif finding
by logic regression,” Bioinformatics, vol. 20, no. 16, pp. 2799–2811,
Nov. 2004.

[34] J. T. Kim, J. E. Gewehr, and T. Martinetz, “Binding matrix: A novel
approach for binding site recognition,” J. Bioinformatics and Computa-
tional Biology, vol. 2, no. 2, pp. 289–307, June 2004.

[35] S. Knudsen, “Promoter2.0: For the recognition of PolII promoter se-
quences,” Bioinformatics, vol. 15, no. 5, pp. 356–361, May 1999.

[36] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler,
“Hidden Markov models in computational biology: Applications to
protein modeling,” J. Molecular Biology, vol. 235, no. 5, pp. 1501–
1531, Feb. 1994.

[37] P. Lavoie, J.-F. Crespo, and Y. Savaria, “Generalization, discrimination,
and multiple categorization using adaptive resonance theory,” IEEE
Trans. Neural Networks, vol. 10, no. 4, pp. 757–767, July 1999.

[38] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald,
and J. C. Wootton, “Detecting subtle sequence signals: A Gibbs sampling
strategy for multiple alignment,” Science, vol. 262, no. 5131 pp. 208–
214, Oct. 1993.

[39] S. Liang, M. P. Samanta, and B. A. Biegel, “cWINNOWER algorithm
for finding fuzzy DNA motifs,” J. Bioinformatics and Computational
Biology, vol. 2, no. 1, pp. 47–60, Mar. 2004.

[40] C. Linhart and R. Shamir, “The degenerate primer design problem,”
Bioinformatics, vol. 18, Suppl. 1, pp. S172–S180, 2002.

[41] Y. Liu, X. S. Liu, L. Wei, R. B. Altman, and S. Batzoglou, “Eukaryotic
regulatory element conservation analysis and identification using com-
parative genomics,” Genome Research, vol. 14, no. 3, pp. 451–458, Mar.
2004.

[42] A. M. Moses, D. Y. Chiang, and M. B. Eisen, “Phylogenetic motif
detection by expectation-maximization on evolutionary mixtures,” Proc.
Pacific Symposium on Biocomputing, Fairmont Orchid, HI, Jan. 2004,
pp. 324–335.

[43] A. F. Neuwald, J. S. Liu, D. J. Lipman, and C. E. Lawrence, “Extracting
protein alignment models from the sequence database,” Nucleic Acids
Research, vol. 25, no. 9, pp. 1665–1677, May 1997.

[44] H. Nielsen, J. Engelbrecht, S. Brunak, and G. von Heijne, “Identification
of prokaryotic and eukaryotic signal peptides and prediction of their
cleavage sites,” Protein Engineering, vol. 10, no. 1, pp. 1–6, Jan. 1997.

[45] H. Nielsen, J. Engelbrecht, S. Brunak, and G. von Heijne, “A neural
network method for identification of prokaryotic and eukaryotic signal
peptides and prediction of their cleavage sites,” International J. Neural
Systems, vol. 8, no. 5—6, pp. 581–599, Oct./Dec. 1997.

[46] A. R. Ortiz, A. Kolinski, and J. Skolnick, “Nativelike topology assembly
of small proteins using predicted restraints in Monte Carlo folding
simulations,” Proc. National Academy of Sciences of the USA, vol. 95,
no. 3, pp. 1020–1025, Feb. 1998.

[47] B. Padmanabhan and A. Tuzhilin, “Pattern discovery in temporal
databases: A temporal logic approach,” Proc. Second International Con-
ference on Knowledge Discovery and Data Mining, Portland, Oregon,
Aug. 1996, pp. 351–354.

[48] P. A. Pevzner and S.-H. Sze, “Combinatorial approaches to finding
subtle signals in DNA sequences,” Proc. 8th International Conference on
Intelligent Systems for Molecular Biology, San Diego, CA, Aug. 2000,
pp. 269–278.

[49] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–
286, Feb. 1989.

[50] W. R. Taylor and D. T. Jones, “Deriving an amino acid distance matrix,”
J. Theoretical Biology, vol. 164, no. 1, pp. 65–83, Sept. 1993.

[51] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTALW:
Improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight

9

matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680,
Nov. 1994.

[52] G. White and W. Seffens, “Using a neural network to backtranslate
amino acid sequences,” Electronic J. Biotechnology [online], Dec.
1998, Vol. 1, No. 3. Available from:
http://www.ejbiotechnology.info/content/vol1/issue3/full/5/index.html.
ISSN 0717-3458

[53] C. T. Workman and G. D. Stormo, “ANN-Spec: A method for discov-
ering transcription factor binding sites with improved specificity,” Proc.
Pacific Symposium on Biocomputing, Honolulu, HI, Jan. 2000, pp. 467–
478.

[54] C. Wu, S. Shivakumar, H. P. Lin, S. Veldurti, and Y. Bhatikar, “Neu-
ral networks for molecular sequence classification,” Mathematics and
Computers in Simulation, vol. 40, no. 1–2, pp. 23–33, Dec. 1995.

[55] J. Xie, K. C. Li, and M. Bina, “A Bayesian insertion/deletion algorithm
for distant protein motif searching via entropy filtering,” J. the American
Statistical Association, vol. 99, no. 466, pp. 409–420, June 2004.

[56] E. P. Xing, W. Wu, M. I. Jordan, and R. M. Karp, “Logos: A modular
Bayesian model for de novo motif detection,” J. Bioinformatics and
Computational Biology, vol. 2, no. 1, pp. 127–154, Mar. 2004.

[57] R. Y. Zheng and R. Thomson, “Bio-basis function neural network for
prediction of protease cleavage sites in proteins,” IEEE Transactions on
Neural Networks, vol. 16, no. 1, pp. 263–274, Jan. 2005.

[58] http://pbil.univ-lyon1.fr/acuts/ACUTS home.html.

Derong Liu (S’91-M’94-SM’96-F’05) received the
Ph.D. degree in electrical engineering from the Uni-
versity of Notre Dame, Notre Dame, Indiana, in
1994; the M.S. degree in electrical engineering from
the Institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 1987; and the B.S. de-
gree in mechanical engineering from the East China
Institute of Technology (now Nanjing University of
Science and Technology), Nanjing, China, in 1982.
From 1982 to 1984, he was a product design en-
gineer at China North Industries Corporation, Jilin,

China. From 1987 to 1990, he was an instructor at the Graduate School
of the Chinese Academy of Sciences, Beijing, China. From 1993 to 1995,
he was a staff fellow at General Motors Research and Development Center,
Warren, Michigan. From 1995 to 1999, he was an Assistant Professor in
the Department of Electrical and Computer Engineering, Stevens Institute of
Technology, Hoboken, New Jersey. He joined the University of Illinois at
Chicago in 1999 where he is now an Associate Professor of Electrical and
Computer Engineering, of Bioengineering, and of Computer Science. Since
2005, he serves as the Director of Graduate Studies in the Department of
Electrical and Computer Engineering at the University of Illinois at Chicago.
He is coauthor (with A. N. Michel) of the books Dynamical Systems with
Saturation Nonlinearities: Analysis and Design (New York: Springer-Verlag,
1994) and Qualitative Analysis and Synthesis of Recurrent Neural Networks
(New York: Marcel Dekker, 2002). He is coeditor (with P. J. Antsaklis) of the
book Stability and Control of Dynamical Systems with Applications (Boston,
MA: Birkhauser, 2003).

Dr. Liu was a member of the Conference Editorial Board of the IEEE
Control Systems Society (1995–2000); and served as an Associate Editor of
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL
THEORY AND APPLICATIONS (1997–1999), the IEEE TRANSACTIONS ON
SIGNAL PROCESSING (2001–2003), and the IEEE TRANSACTIONS ON NEU-
RAL NETWORKS (2004–2006). Since 2004, he has been the Editor of the IEEE
Computational Intelligence Society’s Electronic Letter; and since 2006, he has
been the Letter Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS,
an Associate Editor of the IEEE COMPUTATIONAL INTELLIGENCE MAGA-
ZINE, and an Associate Editor of the Automatica. He is the Program Chair
for the following three conferences: the 2007 IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning; the
21st IEEE International Symposium on Intelligent Control (2006); and the
2006 International Conference on Networking, Sensing and Control. He has
served and is serving as a member of the organizing committee and the
program committee of several international conferences. He is an elected
AdCom member of the IEEE Computational Intelligence Society (2006–2009)
and he is the Chair of the Chicago Chapter of the IEEE Computational
Intelligence Society. He was recipient of the Michael J. Birck Fellowship
from the University of Notre Dame (1990), the Harvey N. Davis Distinguished
Teaching Award from Stevens Institute of Technology (1997), and the Faculty
Early Career Development (CAREER) award from the National Science
Foundation (1999). He is a Fellow of the IEEE and a member of Eta Kappa
Nu.

Xiaoxu Xiong (S’03) is currently a Ph.D. student
in electrical and computer engineering at the Uni-
versity of Illinois at Chicago. He received the M.S.
degree and B.S. degree in electrical engineering
from Harbin Engineering University, Harbin, China,
in 2000 and 1998, respectively. His current re-
search interests include artificial intelligence, pattern
recognition and bioinformatics. From 1998 to 2000,
he was a software engineer in the Hitech Special
Software Institute, Harbin, China. He served as a
web administrator for the 2006 IEEE International

Conference on Networking, Sensing and Control.

10

Bhaskar DasGupta (M’96-SM’01) is currently
an associate professor in the Computer Science
Department at University of Illinois at Chicago
(UIC) and also affiliated with the Bioengineering
Department at UIC. He did his PhD from University
of Minnesota in 1995, was a post-doctoral fellow
at DIMACS and jointly at University of Waterloo
and McMaster University in Canada before he
joined the computer science department of camden
campus of Rutgers University; in 2001 he moved
to UIC. His research specific research interests

include application of combinatorial/geometric techniques to design efficient
algorithms for computational problems in bioinformatics, systems biology
and hybrid systems; his broader research interests include designing efficient
combinatorial algorithms for computationally hard problems in diverse areas
in addition to bioinformatics such as computational geometry, VLSI/CAD,
parallel computing, optical networks, and combinatorial auctions. His
research works have been supported by numerous NSF grants, including an
NSF CAREER award.

Are you a senior member??

Huaguang Zhang (SM’04) was born in Jilin, China,
in 1959. He received the B.S degree and M.S
degree in control engineering from Northeastern
Electric Power University of China in 1982 and
1985, respectively. He received the Ph. D degree
in thermal power engineering and automation from
Southeastern University of China in 1991. He en-
tered automatic control department, Northeastern
University, in Jan. 1992, as a postdoctoral fellow
for two years. Since 1994, he has been a professor
and Head of the Institute of Electric Automation,

Northeastern University, Shenyang, China. His main research interests are
fuzzy control, chaos control, neural networks based control, nonlinear control,
signal processing, and their applications.

Dr. Zhang was awarded the “Excellent Youth Science Foundation Award”
by the China Natural Science Foundation in 2003. He was named the
“Changjiang Scholar” by China Education Ministry in 2005.

11

