Approximation Algorithms For MAX-MIN Tiling*

Piotr Berman' Bhaskar DasGuptal S. Muthukrishnan®

Abstract

The MAX-MIN tiling problem is as follows. We are given a two-dimensional array
All,...,n][1,...,n] where each entry A[i][j] stores a non-negative number. Define a tile of
A to be a subarray A[/,...,r|[t,...,b] of A, the weight of a tile to be the sum of all array
entries in it, and a tiling of A to be a collection of tiles of A such that each entry Ali][j] is

contained in ezactly one tile.
Given a weight bound W the goal of our MAX-MIN tiling problem is to find a tiling of A

such that
1. each tile is of weight at least W (the MIN condition), and
2. the number of tiles is mazimized (the MAX condition).

The MAX-MIN tiling problem is known to be NP-hard; here, we present first non-trivial
approximations algorithms for solving it.

*The preliminary version of these results appeared in 13th ACM-SIAM Annual Symposium on Discrete Algo-
rithms, January 6-8, 2002, pp. 455-464.

tDepartment of Computer Science, Pennsylvania State University, University Park, PA 16802. Email:
berman@cse.psu.edu. Supported in part by NSF grant CCR-9700053 and NLM grant LM05110.

'Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607. Email:
dasgupta@cs.uic.edu. Supported in part by NSF Grants CCR-0296041, CCR-0206795 and CCR-0208749, and

a UIC startup fund.
SAT&T Labs — Research, 180 Park Avenue, Florham Park, NJ 07932. Email: muthu@research.att.com.

1 Introduction

We investigate a tiling problem to optimize a certain MAX-MIN criteria. This problem is natural,
well-motivated and is known to be NP-hard. Our main results are non-trivial approximation
algorithms for this problem using variations of a simple slice and dice approach. In what follows,
we present our problem and results formally.

1.1 Formal Problem Statement

Our input is a two dimensional array A[1,...,n][1,...,n]in which each entry A[i][j] stores a non-
negative number' and a weight bound W. Define a tile of A to be a subarray A[(, ..., 7][t,...,b]
of A, the weight of a tile to be the sum of all array entries in it, and a tiling of A to be a collection
of tiles of A such that each entry A[i|[j] is contained in ezactly one tile. The goal of our MAX-MIN
tiling problem is to find a tiling such that

1. each tile is of weight at least W (the MIN condition), and
2. the number of tiles is mazimized (the MAX condition).

Obviously, there is a feasible solution if and only if sum of all elements of A is at least W, hence we
will assume this to be true. This MAX-MIN tiling problem is quite a natural optimization problem.
Typically, they arise when one wants to only consider certain ‘classes” that are each sufficiently
significant, an wishes to minimize the “classes” under consideration. Such situations arise for
example in data mining: mining optimized association rules with numerical attributes [4]. This
problem was posed to us in a personal communication [7].

There is a related tiling problem, namely, the MIN-MAX tiling problem of [2, 3] where one is
provided a budget of number of tiles, and the goal is to maximize the weight of tile in a tiling
subject to the budget. Both MIN-MAX and MAX-MIN problems are known to be NP-hard [5].
Although our MAX-MIN tiling problem may appear to be similar to the MIN-MAX tiling problem,
there are fundamental differences. For example, if we take a feasible solution for the MIN-MAX
tiling problem and further divide some of the tiles, the solution still remains a feasible solution;
hence a tile that is different from the optimal one may be “fixed” with a few additional tiles as is
typically done in approximation algorithms for the MIN-MAX problem. In contrast, this property
does not hold for our MAX-MIN tiling problem, and as a result it is crucial that the slices be almost
perfect?.

1.2 Our Results

Define a (r, s)-approximation of the MAX-MIN tiling problem to be a solution that produces a
tiling of A with at least rp* tiles each of which has weight at least s(W — ¢), where p* is the

1Unless otherwise stated, we will use bold letters to denote arrays/rectangles and respective regular (non-bold)
letters to denote their weights. In particular, input array A has weight A, and R;, the i*" row of A, has weight
R;.

2A feasible solution for the MAX-MIN tiling problem will of course remain feasible if we combine two or more
tiles into one, but this is a difficult operation to coordinate because the tiles to be merged need to be aligned. In
contrast, further slicing of a tile is a simple, local operation which helps in solving the MIN-MAX tiling problem.

maximum number of tiles used in an optimum solution and ¢ > 0 is a constant. The input array
A is called a binary array if all of its entries are either 0 or 1, otherwise it is called an arbitrary
array; unless otherwise stated, an array is an arbitrary array. Let m be the number of non-zero
elements of A. The following table summarizes our approximation results.

restriction (if any) | (r, s)-approximation time Theorem
A is arbitrary (3,1) O(m + n) | Theorem 1
(3,3) O(n™) | Theorem 3
(3:1) O(n”) | Theorem 3
A is binary (2,1) O(m + n) | Theorem 1

Figure 1: A summary of the results in this paper.

1.3 Techniques

We use variations of what we informally refer to as “slice-and-dice” technique (or simply slicing
and dicing). Researchers have previously used variations or specific implementations of this slice-
and-dice techniques to obtain approximation algorithms for other tiling problems (for example,
see [2,3,5,8,9]). While the slice-and-dice technique by itself is conceptually and algorithmically
simple, the crux of our technical work is in the analyses. In general, an informal description of
this consists of the following steps:

e We slice the array, that is, partition the input array into a number of slices (rectangles)
satisfying certain optimization criterion depending on the problem.

e Depending on the problem, we may need to adjust the slices locally. A local adjustment or
dicing step may typically consist of looking at a few (typically a small constant) number of
nearby slices and repartitioning the entries of the input array spanned by them to obtain
satisfactory approximation results.

We use the following two versions of the slice-and-dice approach:

(Greedy Slice-and-Dice) The algorithm for Theorem 1 is based on greedily slicing the array
into strips and dicing each slice; the resulting running time is linear in the number of non-
zero elements of A and is very simple to implement. Our greedy slice-and-dice algorithm is

similar in flavor to that for the MIN-MAX tiling problem of [2, 3]; however, details, analysis
and lower bounds used are all quite different.

(Recursive Slice-and-Dice: Binary Space Partitionings) We use this approach for the al-
gorithm in Theorem 3. A recursive application of the slice-and-dice technique to the
MAX-MIN tiling problem can be done via a binary space partitioning (BSP) of the tiles.
Therefore, this approach to solving the MAX-MIN tiling problem uses a BSP of isothetic
rectangles where the size of the BSP affects the quality of approximation. For MAX-MIN
tiling it is sufficient to consider a special type of BSP, commonly called binary space auto-
partition, in which every cut is either a horizontal or a vertical line.

1.4 Map

We present our approximation algorithms using the greedy slice-and-dice technique in Section 2.
In Section 3 we provide approximation algorithms using a recursive slice-and-dice technique.
Finally, in Section 4, we present our concluding remarks with possible future research directions.

2 Approximating MAX-MIN Tiling Via Greedy Slice and
Dice

If the input array A contains m non-zero entries then it can be efficiently represented in O(m+n)
space using the standard representation as an array of row lists; the list of the i'" row contains
an entry of the form (j,x) for every positive array entry A[i][j] = x and the row lists are sorted
by the column numbers of the entries®. For this section, we assume that our input array is
represented this way.

We may assume that the weight bound W is 1 by scaling all the entries of A, if necessary.
Now, a feasible solution for the MAX-MIN tiling problem is a tiling of A in which every tile has a
weight of at least 1. Obviously, we may assume that A > 1, since otherwise the MAX-MIN tiling
problem has no feasible solution®. Let b = max;<; j<, A[][j]. We may assume that b < 1 by
using the following crucial observation.

Observation 1 Given an instance array A of the MAX-MIN tiling problem, let A’ be the array
obtained from A in which every element larger than 1 is replaced by 1. Then, any feasible solution
for A is also a feasible solution for A’ and vice versa.

1

5, 1)-approximation to the

The main result of this section is the following theorem giving a (
MAX-MIN tiling problem.

3If the m non-zero entries of the array A are given in some arbitrary order, then they can be represented as
an array of row lists using bucket sort in O(m + n) time. This will not increase the overall time complexity of
our algorithms.

4Remember that A is the weight (sum of all elements) of the input array A by our notation.

Theorem 1 There exists an approximation algorithm for the MAX-MIN tiling problem that runs in
O(n+m) time and produces a tiling using at least % (p* — 2) tiles each of weight at least W, where
if A is binary

5
x ° o 5
p* is the (mazimum) number of tiles used by an optimal algorithm and r = { 3 otherwise

Proof. First, we describe a basic slicing algorithm that is used by the algorithm in this
proof. The slicing algorithm partitions the input array A into slices; this algorithm is used as
a routine in our approximation algorithm. A slice is a tile that consists of complete rows. The
slicing algorithms starts from the bottom and proceeds upwards, finding minimal slices that
have weight at least 1; the last slice (possibly empty) may have a weight less than 1 and is called
a remainder slice, all other non-remainder slices are called regular slices. More precisely, the
algorithm computes ¢ and array entries ¢t[0] = 0,¢[1],...,t[¢], so that each regular slice S; (for
1 <i < /{) consists of rows Ry 1141 to Ryjj, while the remainder slice Sy starts at row Ryp41.
A psuedocode of the slicing algorithm is as shown below; it is easy to see that this algorithm can
be implemented in O(n + m) time.

t[0] - 0
(0
slice_weight < 0
for i < 1 to n do
slice_weight < slice_weight + R;
if slice_weight > 1 then
C—l+1
t[l] < i
slice_weight < 0

Define a tile to be good if its total weight is at least 1. We present an algorithm that always
finds a solution with ¢ good tiles such that A < rt 4+ 2. We begin our algorithm by slicing A
using the slicing algorithms as described above. Our dicing step will then consist of partitioning
the union of regular slices into good tiles and covering the remainder slice with the extensions of
adjacent tiles of that slice.

We now describe our dicing step more precisely. First, we consider the case when A is
arbitrary. We partition each slice S; using the same slicing algorithm as described before, except
that we consider columns of S; rather than the rows. This produces vertical slices, V-slices for
short. We denote the number of regular V-slices obtained from S; with «(i), so the V-slices
Vii,...Viaq) are regular and V.41 is the remainder V-slice. To obtain our preliminary
partition, we combine each remainder V-slice with its preceeding regular V-slice. Obviously, this
part of dicing can also be done in a total of O(n + m) time.

Later, we split each regular V-slice V; ; into three parts:

VE.
ViLJ that consists of all columns except the last, -
ij that consists of the last column except its topmost element, VZ.LJ. VR
VlC] that consists of the topmost element of the last column. 2]

We can estimate the weights of these parts as follows:

Vi <1 because V}; did not make a complete V-slice,

Z?‘g VZ’; < 1 because all ij’s together for a specific 7 did not make a complete slice,

VE < 1 because no array entry exceeds 1.

Consequently, the total weight S; of the slice S; satisfies S; = Vii)41 + Z;‘SE(VZL] +VE+VS) <
2+ 2a/(i). Notice that these splits of the V-slices of each regular slice can also be done in a total
of O(n + m) time.

Before we continue, observe that we can already guarantee to use at least | A|/4 tiles. Note
that S; < 24 2a(i) < 4a(i) and A <1+ Zle Si <1+ Zle 4a(i), while we used t = Zle a(i)
tiles. Therefore 4t > A — 1 and hence 4t > | A|, proving immediately an approximation ratio of
4. To improve this ratio, we do the following additional dicing:

for 1 <2 to ¢ do
if slice S; | was not modified and a(i — 1) = 1 and «(i) < 2 then
if possible, partition S;_; US; into a(i — 1) + (i) + 1 good tiles

To ensure a total running time of O(n + m), we need to show how to implement each such
additional dicing on S, ; US; (whenever needed) in O(f + 2) time, where /3 is the total number
of non-zero elements of S; ; US;. Since 3 < a(i — 1) + a(i) + 1 < 4 when this additional dicing
step is necessary, it suffices to show how to implement this step in O(/5 + 2) time when S; _;US;
is partitioned into 4 good rectangles (a partition into 3 good rectangles can be obtained in an
intermediate step in the solution for a partition into 4 good rectangles). An inspection of Cases 6,
7, 8, 10, 11 and 12 show that the tiles made by the additional dicing step is only one of the
following types: some slice in the current partition of S; ; (respectively, S;) extended vertically
to cover rows of S; (respectively, S;_1), a rectangular part of a current slice of S; or S;_; and a
tiling of a remaining rectangular region of S;_; US; into at most 3 rectangles. The first two types
are easy to compute, given the current partitioning of S;_; and S;, in O(f + 2) time. Hence, it is
sufficient to show how to partition a given rectangle into 3 good rectangles (if possible). There
are only six basic ways to partition a given rectangle into 3 good rectangles as shown below and
it is easy to verify if one of these partitions exist using a greedy approach in O(f + 2) time.

To show that we will use ¢ good tiles such that ¢ > L%J, it suffices to show that A < 3t+ 2.

This in turn follows from Zle Si < 3t+1.
Define o(1) = 0 and o(i), for 2 < i < £ to be as follows:

(i) = 1 if the above for loop increased the number of tiles while processing S;_; U S;
9 =11 0 otherwise

Clearly, our algorithm uses ¢t = Zle[a(i) +0(i)] tiles, so we need to show that Zle[Si —3a(i) —

30(i)] < 1. For notational convenience, let ((k) = 3¢, [S; — 3a(i) — 30(i)] for 1 < k < ¢ and

6

¢(0) = 0. Hence, in our new notation, it is sufficient to show that ((¢) < 1. We do it by induction
on /. Our inductive claim is the following:

if ((k) > 0 then a(k) =1, S; — Vi}y > L and ¢(k) < Vil + Vo — 1
This inductive claim is sufficient, because for k = ¢, if ((k) > 0 then
° VkL,l < 1 as has already been pointed out before,
e Vi2 <1 because, by inductive claim, a(k) =1 and hence V5 is the remainder slice,
e and, hence, (k) < 1.

The basis of induction is trivial since ((0) = 0. For the inductive step, we assume that the claim
holds for ((k — 1) and then we consider several cases.

Case 1: a(k) > 2. Then, ((k) < {(k—1)+ Sk —3a(k) < 1+2+42a(k) —3a(k) =3 —a(k) <0.

Case 2: ((k—1) <0 and a(k) =2. Then, ((k) < ((k—1) + Sk — 3a(k) < Sk — 3a(k) <
24+4—-6=0.

Case 3: ((k—1) <0 and «(k) = 1. Then, ((k) < Sy —3a(k) < (VkL1 —l—Vkﬁ—l—VkI,{leVk,z) -3<
Vi +Via — 1.

Case 4: o(k) =1. Then, ((k) < ((k—1)+ Sk —3a(k) =3 < 1+ (2+ 2a(k)) — 3a(k) — 3 =
—a(k) < —1.

For the remaining cases, we can assume that ((k —1) > 0, o(k) = 0 and «(k) € {1,2}. First we
consider various cases for «(k) = 1. For convenience, we will use the following notations:

C = V,f_m, D = V,f_l,l U V,f_l,l, E=V;_ 1, C = V,ﬁl, D' = V,ﬁl U V,ﬁl, and
E, — ng

Since ((k—1) > 0, by inductive hypothesis ((k—1) < C+E—1, Sy_1—C > 1l and a(k—1) = 1.
Case 5: Sy —(C" < 1. Then, Sy <2 and (k) <1+2-3=0.

Case 6: S, —C' > 1 and D and D' are in the same column of the given array. One pos-
sible way to partition S;_; US}, is using the three tiles> CUC’, S;_; —C, and S;, — C'. The
tile S5, 1 —C is good since S, 1 —C > 1. and the tile S, — C’ is good since Sy —C" > 1. But,
since o (k) = 0, one of the three tiles must not be good, therefore we must have C' +C" < 1.
By a symmetric argument, E+E' < 1. Thus ((k) < C+E—-1+C'+D'+E' -3 < C'—=2 < 0.

For the remaining cases we use the additional notations: D}, = Vi, and D) = V.

For two tiles X and Y such that Y is a part of X, X — Y is the tile obtained by removing Y from X.

Case 7: D' is in a column of C. One attempt to partition S;_; U Sj is to use the following
three tiles: extension of C upward to cover D/, the top row of Sy and the remaining
uncovered part of Sp_; U S,. If the top row of Sy is not good, then that already implies
Sy < 2 and hence (k) <142 —3 =0. So, assume that the top row of Sy, is good. Since
Sk_1 — C > 1, the remaining uncovered part of S;_; U Sy, which includes Sy ;1 — C > 1,
is also good. But, since (k) = 0, one of the three tiles must not be good, therefore
the extension of C upward to cover D/, cannot be good, implying C' + D!, < 1, and thus
(k)< (C+E-1)+(C"+D),+D,+FE)-3<E+C'+D,+E -3<C'+FE —1.

Case 8: D' is in a column of E. Symmetric to Case 7.

For the remaining cases we assume that a(k) = 2, so we have to show ((k) < 0. We use all the
notations as before, except that now F/, = Vf’z.

Case 9: S < 5. This is similar to Case 5 since now (k) < ((k—1)+ S, —3a(k) <1+5—-6 =0.

Case 10: S, > 5 and D and D' are in the same column. One attempt to partition Sj_; U
Sk into at least a(k — 1) + a(k) + 1 =4 tiles is CUC', S;_; — C, and two tiles made of
S, — C". If we cannot partition S — C' into two good tiles, then S, — C" < 4 and thus
Sk < 5, an impossibility for this case. The tile S, ; — C is also good since, by inductive
hypothesis, S, — C’ > 1. But, this attempt must fail since o(k) = 0. Hence, this attempt
fails only because C'+C" < 1. Note also that Sy —C" < 5, thus ((k) < C+E—1+S,—6 =
(C+C)+E—14(Sp—C)—6<1+1—1+5—6=0.

Case 11: S, > 5 and D and F), are in the same column. Symmetric to Case 10.

Case 12: when none of the above 11 cases apply. Now neither D’ nor F/, is in the same
column as D. To make analysis more succinct, we introduce a some more notations. First,
let X =S, —D),—F). Then X =C'+ D, + Vk)+ Vi + Vis < 5. Second, Y (respectlvely,
Z) is the sum of Welghts of those elements of D/, and F/, (if any) that are in the same
column as C (respectively, E). Obviously, Sy = X +Y + Z

One attempt to partition S,_; U Sy using at least a(k — 1) + a(k) + 1 = 4 tiles is one tile
extending C upward towards S, so that it covers all but the topmost row of S, two tiles
covering the top row of Sy, and one tile covering the rest of S, | U Sg. Since S, > 5, the
total weight of the top row of Sy is at least 4 and hence it is possible to partition the top
row of Sy into two good tiles. The tile covering the rest of Sy_; US includes S;_; — C and
hence is good since S_; —C > 1 by inductive hypothesis. But, since o(k) = 0, this attempt
must fail. Therefore, the tile extending C upward towards Sy so that it covers all but the
topmost row of Sy is not good, hence C' +Y < 1. Similarly, we can show that £+ Z < 1.
Thus (k) < ((k—1)+ Sk —3a(k) <C+E—-14+S,—6=(C+Y)+(E+2)+ X -7 <0.

This ends the analysis of the algorithm for the case when A is arbitrary. Now we consider
the case when A is binary. After rescaling the entries of A such that W = 1, we may assume
that each non-zero element of A is equal to W~! where W is an integer. We will prove that
A< @ The algorithm and the proof that A < % is similar to the previous, so we will only
list the differences.

o Vi Viawr <1— 5, VG <&, S0 VE <1 — L thus S; < a(i) +2 - 2.

e We will show that the number ¢ of tiles produced by our algorithm satisfies A < ‘r’tzj by
showing that ¢(k) = Y& [Si — 2a(i) — 3o(i)] < 1/s.

e Our modified inductive claim is: if (k) > 0 then a(k) = 1 and ((k) < Sy, — 2. Note that

this means that ((k) < 3 — &.

e The basis of induction is trivial as before by defining ((0) = 0. We now have the following
simpler case analysis for the inductive step:

Case 1: a(k) > 1. Then, ((k) < 5+ Sk — 2 < a(k) + 2 — 2a(k) <2 —a(k) <0.

Case 2: a(k)=1and ((k—1) <0 . If (k) > 0 then (k) < ((k—1) + Sy — 2a(k) <
Sk — 3.

Case 3: a(k) =1 and ((k — 1) > 0. By inductive hypothesis, a(k—1) =1 and ((k—1) <
Sk—1 — 2. If (k) < Sk — 2, then there is nothing to prove. Otherwise, ((k) > Sy — 3

Since ((k) = ((k — 1) + Sk — 5 — 20(k), it follows that

2

S 1+Sp—d = (s,“ _ g) + (s - ;) > C(h—1)+ <5k _ g) _ C(k)+1+ga(k) 51

implying S+ S; > 5. Because the total weight of elements of all the rows of a slice,
excluding the elements of the top row, is at most 1 — %, the sum of weights of the
elements of the top rows of S;_; and S;, is at least 3 + % We now apply the vertical
slicing algorithm to Si_; USk. The last column in a vertical slice has at most 2 non-
zeros from the top rows, and the previous columns have at most W —1 non-zeros, thus
the weight of the intersection of a vertical slice with the two top rows is at most 1+ %
Thus after creating the first 2 vertical slices we still have a total weight of at least
1 available among remaining uncovered elements in the two top rows. Consequently,
we are successful to partition Sy_; U Sy into a(k — 1) + (k) + 1 = 3 tiles. Therefore,
o(k) =1 and ((k) < Sp_1 + S — 2 < 0.

O

Remark: In the proof of the above theorem, we used the total weight A of the input array A as
an (obvious) upper bound on the number of tiles in an optimum solution. The following example
shows that an alternative lower bound is necessary to prove better performance ratios for arbi-
trary arrays. For every ¢t > 0, we can construct a corresponding array A such that ¢ is the maxi-
mum number of good tiles in the partition and [A] = 3t+2. Our Aisa (t+2) x (t+2) array where
every non-zero
entry equals 1 — 4%; there are 3t + 2 non-zeros distributed in three diagonals in a
manner shown in the adjacent diagram (where e indicates a non-zero). One can see
that a good tile must contain at least two non-zeros. A brief inspection shows that
every good tile must contain a non-zero from the central diagonal. Consequently,
there cannot be more than ¢ disjoint good tiles.

9

3 Approximating MAX-MIN Tiling Via Recursive (BSP Based)
Slice and Dice

First, we need to review the definitions and related results for binary space partitioning (BSP)
of a set of isothetic rectangles. Then, we show how to use these results for our approximation
algorithm.

3.1 Binary Space Partitioning: Definitions and Results

Given a rectangular region R containing a set of n disjoint isothetic rectangles, a BSP of R
consists of recursively partitioning R by a horizontal or vertical line into two subregions and
continuing in this manner for each of the two subregions until each obtained region contains at
most one rectangle. If a rectangle is intersected by a cutting line, it is split into disjoint rectangles
whose union is the intersected rectangle. Thus, naturally, BSP is a slice-and-dice procedure since
each “cut” separates a region into two subregions. The size of a BSP is the number of regions
produced. A set of rectangles form a tiling if they partition some rectangular region R. It is
shown in [5,6] that a BSP of R with the minimum number of regions can be computed using
dynamic programming technique in O(n®) time.

Following is the improved result for the sizes of BSPs for isothetic rectangles as obtained
in [1] that will be of use to us.

Theorem 2 [1] Assume that the rectangles in our collection form a partition of R. Then, there
exists a BSP of R containing at most 2n — 1 regions. Moreover, in such a BSP each rectangle
rectangle of R is cut into at most 4 pieces.

3.2 Our Approximation Algorithm

The following theorem is our main result in this section.

Theorem 3 There erists an O(n”) time (r, s)-approzimation algorithm for the MAX-MIN tiling
1

problem for the following values of r and s: (a) r = 5 and s = 1 and (b) r =5 and s = 5.
Proof. Consider an optimum solution OPT that uses p* tiles each of weight at least W. By
Theorem 2 there exists a BSP of OPT that has at most 2p* tiles in which each rectangle of
OPT is cut into at most 4 pieces. Let w; > 0 be the fraction of rectangles in OPT that is cut
into 7 pieces for 1 < i < 4 (hence, 2?21 w; = 1). Hence, Zle iw; < 2. which implies wy < %
Assume that wy, = % — ¢ for some fraction % > ¢ > 0. Then, 2?21 w; =1 —wy = % + ¢ and
2?21 1w; < 2 — 4wy = 4e. The last inequality implies that w3 < %5. Assume that ws = %6 —&
for some fraction %6 > ¢, > 0. Hence, 21221 w; = % +e&—ws = % — £ +¢&; and Zle w; <
4e — 3ws = 3¢¢. The last inequality implies that wy < %61. Assume that wy = %61 — g9 for some

fraction %51 > g9 > 0. Hence, w; = % —steEl—we = % — § — 5 +e9. If arectangle of weight W

is cut into ¢ pieces, then obviously at least one of the piece has a weight of at least % Hence,

10

the fraction k of rectangles of OPT which has a weight of at least % in the BSP is at least

k

v
TS
»l
s|§

(T5-g+ea) 13 G- +il-)+1G-9)

D _ 5 g4 &5 5% _&ax»5_5_ 1 _1 i 1 de 2
s 3% t228 3 1228 T 182 (smce6§2and51§3<3)

11

This provides a (3, ;)-approximation. Similarly, the fraction &' of rectangles of OPT which has

a weight of at least % in the BSP is at least

k/

[V
v}
Il
SE

(T5-2+2)+10a-a) + (-2
_ € € € 5 -

st B tT 23 B2 w7

giving a (%, %)—approximation. To compute such a BSP of A, we use a natural dynamic pro-

gramming technique similar to that used in [5] for a specific T € {3,4}. Define a hierarchical
binary partition (HBP) of an array to be either the entire array or the unions of the HBPs of
the two subarrays of a partition of the array by a horizontal or vertical cut. Obviously, a BSP
of OPT is also a HBP of the given array A. For each subarray A[i,...,j][k,...,] and for each
1 < p < n?, define ['(4, j, k, £, p) to be a HBP of this subarray of in which p tiles are of weight at
least sW if such a partition exists, and to be () otherwise. There are at most O(n*) subarrays of
the given array A, and it is easy to calculate the weights of all of these subarrays using dynamic
programming in O(n?) time. If the weight of the subarray Ali,...,j][k,..., /] is less than sW,
then obviously I'(z, 7, k, ¢, p) = () for every p. On the other hand, if the weight of the subarray
Ali, ..., jllk, ..., 0] is at least sWW, then there are (j — i)+ (¢{ — k) +3 < 2n — 1 ways to construct
a HBP of A[i,...,j|[k,...,

e The entire subarray as a single tile. This implies that ['(i, 7, k,¢,1) = A[i, ..., jl[k, ...,]

e Split the subarray by a vertical line into two subarrays Al[i,...,j]k,...,¢1] and
Ali, ..., j][ti+1,...,4], or by a horizontal line into two subarrays Ali, ..., j1][k, ...,] and
Alji+1,...,][k, ..., ¢]. By dynamic programming, we we know the values of I'(, j, k, {1, p),
(i, 7,01+ 1,¢,p), (i, j1,k, ¢, p) and T'(j; + 1,4, k, £, p) for all p, hence we can use them to
find the value of I'(4, j, k, ¢, p) for each p.

The final answer is contained in {T'(1,n,1,n,p)|1 < p < n?}. The total time taken by our
algorithm is O(n* - n -n?) = O(n"). O

4 Concluding Remarks

We studied the MAX-MIN tiling problem and obtained non-trivial approximation algorithms for
this problem using the slice-and-dice approach in two ways. It would be of significant interest
to study efficient approximation algorithms for this problem in higher dimensions and we expect
variations of the slice-and-dice technique to be useful there as well.

11

References

1]

P. Berman, B. DasGupta and S. Muthukrishnan. On the Exact Size of the Binary Space
Partitioning of Sets of Isothetic Rectangles with Applications. SIAM Journal of Discrete
Mathematics, Vol. 15, No. 2, pp. 252-267, 2002.

P. Berman, B. DasGupta, S. Muthukrishnan and S. Ramaswami. Improved Approxi-
mation Algorithms for Rectangle Tiling and Packing. 12" ACM-SIAM Symposium on
Discrete Algorithms, pp. 427-436, 2001.

P. Berman, B. DasGupta, S. Muthukrishnan and S. Ramaswami. Efficient Approximation
Algorithms for Tiling and Packing Problems With Rectangles. Journal of Algorithms, Vol.
41, pp. 443-470, 2001.

T. Fukuda, Y. Morimoto, S; Morishita and T. Tokuyama. Mining optimized association
rules for numeric attributes. ACM Proc. on Principles of Database Systems (PODS), pp
182-191, 1996.

S. Khanna, S. Muthukrishnan, and M. Paterson. Approximating rectangle tiling and
packing. 9" ACM-SIAM Symposium on Discrete Algorithms, pp. 384-393, 1998.

S. Muthukrishnan, V. Poosala and T. Suel. Rectangular Partitionings: Algorithms, Com-
plexity and Applications. International Conference on Database Theory (ICDT), Springer
LNCS, Vol 1540, pp 236-256, 1999.

C. H. Papadimtriou, personal communication.

J. Sharp. Tiling Multi-dimensional Arrays. Foundations of Computing Theory, Springer,
LNCS, Vol 1684, pp. 500-511, 1999.

A. Smith and S. Suri. Rectangular Tiling in Multi-dimensional Arrays. 10** ACM-SIAM
Symp on Discrete Algorithms, pp 786-794, 1999.

12

