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Abstract. In this paper, we consider the weighted online set k-multicover
problem. In this problem, we have an universe V of elements, a family S
of subsets of V with a positive real cost for every S ∈ S, and a “coverage
factor” (positive integer) k. A subset {i0 , i1 , . . .} ⊆ V of elements are pre-
sented online in an arbitrary order. When each element ip is presented,
we are also told the collection of all (at least k) sets Sip ⊆ S and their
costs in which ip belongs and we need to select additional sets from Sip
if necessary such that our collection of selected sets contains at least k
sets that contain the element ip . The goal is to minimize the total cost of
the selected sets3. In this paper, we describe a new randomized algorithm
for the online multicover problem based on the randomized winnowing
approach of [11]. This algorithm generalizes and improves some earlier
results in [1]. We also discuss lower bounds on competitive ratios for
deterministic algorithms for general k based on the approaches in [1].

1 Introduction

In this paper, we consider the Weighted Online Set k-multicover problem (ab-
breviated as WOSCk) defined as follows. We have an universe V = {1, 2, . . . , n}

of elements, a family S of subsets of U with a cost (positive real number)
cS for every S ∈ S, and a “coverage factor” (positive integer) k. A subset
{i0, i1, . . .} ⊆ V of elements are presented in an arbitrary order. When each
element ip is presented, we are also told the collection of all (at least k) sets
Sip ⊆ S in which ip belongs and we need to select additional sets from Sip , if
necessary, such that our collection of sets contains at least k sets that contain
the element ip. The goal is to minimize the total cost of the selected sets. The
special case of k = 1 will be simply denoted by WOSC (Weighted Online Set
3 Our algorithm and competitive ratio bounds can be extended to the case when a set

can be selected at most a prespecified number of times instead of just once; we do
not report these extensions for simplicity.



Cover). The unweighted versions of these problems, when the cost any set is one,
will be denoted by OSCk or OSC.

The performance of any online algorithm can be measured by the competitive
ratio, i.e., the ratio of the total cost of the online algorithm to that of an optimal
offline algorithm that knows the entire input in advance; for randomized algo-
rithms, we measure the performance by the expected competitive ratio, i.e., the
ratio of the expected cost of the solution found by our algorithm to the optimum
cost computed by an adversary that knows the entire input sequence and has no
limits on computational power, but who is not familiar with our random choices.

The following notations will be used uniformly throughout the rest of the
paper unless otherwise stated explicitly:

– V is the universe of elements;
– m = max

i∈V
|{S ∈ S | i ∈ S}| is the maximum frequency, i.e., the maximum

number of sets in which any element of V belongs;
– d = max

S∈S
|S| is the maximum set size;

– k is the coverage factor.

None of m, d or |V | is known to the online algorithm in advance.

1.1 Motivations and Applications

There are several applications for investigating the online settings in WOSCk.
Below we mention two such applications:

Client/Server Protocols [1] : Such a situation is modeled by the problem
WOSC in which there is a network of servers, clients arrive one-by-one
in arbitrary order, and the each client can be served by a subset of the
servers based on their geographical distance from the client. An extension
to WOSCkhandles the scenario in which a client must be attended to by
at least a minimum number of servers for, say, reliability, robustness and
improved response time. In addition, in our motivation, we want a distrib-
uted algorithm for the various servers, namely an algorithm in which each
server locally decide about the requests without communicating with the
other servers or knowing their actions (and, thus for example, not allowed to
maintain a potential function based on a subset of the servers such as in [1]).

Reverse Engineering of Gene/Protein Networks [2, 4, 6, 9, 10, 14, 15] :
We briefly explain this motivation here due to lack of space; the reader
may consult the references for more details. This motivation concerns un-
raveling (or “reverse engineering”) the web of interactions among the com-
ponents of complex protein and genetic regulatory networks by observing
global changes to derive interactions between individual nodes. In one such
setup, one assumes that the time evolution of a vector of state variables



x(t) = (x1(t), . . . , xn(t)) is described by a system of differential equations:

∂x

∂t
= f(x,p) ≡




∂x1

∂t = f1(x1, . . . , xn, p1, . . . , pm)
∂x2

∂t = f2(x1, . . . , xn, p1, . . . , pm)
...

∂xn

∂t = fn(x1, . . . , xn, p1, . . . , pm)

where p = (p1, . . . , pm) is a vector of parameters, such as levels of hormones
or of enzymes, whose half-lives are long compared to the rate at which the
variables evolve and which can be manipulated but remain constant during
any given experiment. The components xi(t) of the state vector represent
quantities that can be in principle measured, such as levels of activity of
selected proteins or transcription rates of certain genes. There is a reference
value p̄ of p, which represents “wild type” (that is, normal) conditions, and
a corresponding steady state x̄ of x, such that f(x̄, p̄) = 0. We are interested
in obtaining information about the Jacobian of the vector field f evaluated
at (x̄, p̄), or at least about the signs of the derivatives ∂fi/∂xj(x̄, p̄). For
example, if ∂fi/∂xj > 0, this means that xj has a positive (catalytic) effect
upon the rate of formation of xi. The critical assumption is that, while we
may not know the form of f, we often do know that certain parameters pj
do not directly affect certain variables xi. This amounts to a priori biolog-
ical knowledge of specificity of enzymes and similar data. Consequently, an
“online” experimental protocol to achieve the above goal, that gives rise to
the problems WOSCk and OSCk is as follows:
– Change one parameter, say pk.
– Measure the resulting steady state vector x = ξ(p). Experimentally,

this may for instance mean that the concentration of a certain chemical
represented by pk is kept are a slightly altered level, compared to the
default value p̄k; then, the system is allowed to relax to steady state,
after which the complete state x is measured, for example by means of
a suitable biological reporting mechanism, such as a microarray used to
measure the expression profile of the variables xi.

– For each of the possiblem experiments, in which a given pj is perturbed,
we may estimate the n “sensitivities”

bij =
∂ξi

∂pj
(p̄) ≈ 1

p̄j − pj
(ξi(p̄+ pjej) − ξi(p̄))

for i = 1, . . . , n (where ej ∈ R
m is the jth canonical basis vector).

From these data, via some linear-algebraic reductions and depending on
whether each experiment has the same or different cost, one can arrive at
the problems WOSCk and OSCk with “large” k, e.g., when k ≈ |V |.

1.2 Summary of Prior Work

Offline versions SC1 and SCk of the problems WOSCk and OSCk, in which
all the |V | elements are presented at the same time, have been well studied in



the literature. Assuming NP �⊆ DTIME(nlog logn), the SC1 problem cannot be
approximated to within a factor of (1 − ε) ln |V | for any constant 0 < ε < 1

in polynomial time [7]; a slightly weaker lower bound under the more standard
complexity-theoretic assumption of P�=NP was obtained by Raz and Safra [13]
who showed that there is a constant c such that it is NP-hard to approximate
the SC1 problem to within a factor of c ln |V |. An instance of the SCk problem
can be (1+ lnd)-approximated in O(|V | · |S | ·k) time by a simple greedy heuristic
that, at every step, selects a new set that covers the maximum number of those
elements that has not been covered at least k times yet [8, 16]; these results
was recently improved upon in [4] who provided a randomized approximation
algorithm with an expected performance ratio that about ln(d/k) when d/k is
at least about e2 ≈ 7.39, and for smaller values of d/k it decreases towards 1 as
a linear function of

√
d/k.

Regarding previous results for the online versions, the authors in [1] con-
sidered the WOSC problem and provided both a deterministic algorithm with
a competitive ratio of O(logm log |V |) and an almost matching lower bound of
Ω

(
log |S| log |V |

log log |S|+log log |V |

)
on the competitive ratio for any deterministic algorithm

for almost all values4 of |V | and |S |. The authors in [3] provided an efficient ran-
domized online approximation algorithm and a corresponding matching lower
bound (for any randomized algorithm) for a different version of the online set-
cover problem in which one is allowed to pick at most k sets for a given k and
the goal is to maximize the number of presented elements for which at least one
set containing them was selected on or before the element was presented. To the
best of our knowledge, there are no prior non-trivial results for either WOSCk
or OSCk for general k > 1.

1.3 Summary of Our Results and Techniques

Let r(m,d, k) denote the competitive ratio of any online algorithm for WOSCk
as a function of m, d and k. In this paper, we describe a new randomized
algorithm for the online multicover problem based on the randomized winnowing
approach of [11]. Our main contributions are then as follows:

– We first provide an uniform analysis of our algorithm for all cases of the
online set multicover problems. As a corrolary of our analysis, we observe
the following.
• For OSC, WOSC and WOSCk our randomized algorithm has E [r(m,d, k)]

equal to log2m lnd plus small lower order terms. While the authors in [1]
did obtain a deterministic algorithm for OSC with O(logm log |V |) com-
petitive ratio, the advantages of our approach are more uniform algo-
rithm with simpler analysis, as well as better constant factors and usage
of the maximum set size d rather than the larger universe size |V | in the
competitive ratio bound. Unlike the approach in [1], our algorithm does

4 To be precise, when log2 |V | ≤ |S | ≤ e|V |
1
2

−δ

for any fixed δ > 0; we will refer to
similar bounds as “almost all values” of these parameters in the sequel.



not need to maintain a global potential function over a subcollection of
sets.

• For (the unweighted version) OSCk for general k the expected compet-
itive ratio E [r(m,d, k)] decreases logarithmically with increasing k with
a value of roughly 5 log2m in the limit for all sufficiently large k.

– We next provide an improved analysis of E [r(m,d, 1)] for OSC with better
constants.

– We next provide an improved analysis of E [r(m,d, k)] for OSCk with better
constants and asymptotic limit for large k. The case of large k is important
for its application in reverse engineering of biological networks as outlined
in Section 1.1. More precisely, we show that E [r(m,d, 1)] is at most

(
1
2 + log2m

)
·
(
2 ln dk + 3.4

)
+ 1+ 2 log2m, if k ≤ (2e) · d

1+ 2 log2m, otherwise

– Finally, we discuss lower bounds on competitive ratios for deterministic al-
gorithms for OSCk and WOSCk general k using the approaches in [1]. The

lower bounds obtained are Ω
(

max
{
1,

log
|S|
k log

|V|
k

log log
|S|
k +log log

|V|
k

})
for OSCk and

Ω
(

log |S| log |V |
log log |S|+log log |V |

)
for WOSCk for almost all values of the parameters.

All proofs omitted due to space limitations will appear in the full version of
the paper.

2 A Generic Randomized Winnowing Algorithm

We first describe a generic randomized winnowing algorithm A-Universal be-
low in Fig. 1. The winnowing algorithm has two scaling factors: a multiplicative
scaling factor µ

cS
that depends on the particular set S containing i and another

additive scaling factor |Si|−1 that depends on the number of sets that contain i.
These scaling factors quantify the appropriate level of “promotion” in the win-
nowing approach. In the next few sections, we will analyze the above algorithm
for the various online set-multicover problems. The following notations will be
used uniformly throughout the analysis:

– J ⊆ V be the set of elements received in a run of the algorithm.
– T ∗ be an optimum solution.

2.1 Probabilistic Preliminaries

For the analysis of Algorithm A-Universal, we will use the following combina-
torial and probabilistic facts and results.

Fact 1 If f is a non-negative integer random function, then E [f] =
∑∞
i=1 Pr [f ≥ i] .

Fact 2 The function f(x) = xe−x is maximized for x = 1.



// definition //
D1 for (i ∈ V)
D2 Si ← {s ∈ S : i ∈ S}

// initialization //
I1 T ← ∅ // T is our collection of selected sets //
I2 for (S ∈ S)
I3 αp[S]← 0 // accumulated probability of each set //

// after receiving an element i //
A1 deficit ← k − |Si ∩ T | // k is the coverage factor //
A2 if deficit = 0 // we need deficit more sets for i //
A3 finish the processing of i
A4 A← ∅
A5 repeat deficit times
A6 S ←least cost set from Si − T − A
A7 insert S to A
A8 µ ← cS // µ is the cost of the last set added to A //
A9 for (S ∈ Si − T )

A10 p[S]← min
{
µ
cS

�
αp[S] + |Si |−1

�
, 1
}

// probability for this step //

A11 αp[S]← αp[S] + p[S] // accumulated probability //
A12 with probability p[S]

A13 insert S to T // randomized selection //
A14 deficit ← k − |Si ∩ T |

A15 repeat deficit times // greedy selection //
A16 insert a least cost set from Si − T to T

Fig. 1. Algorithm A-Universal

The subsequent lemmas deal with N independent 0-1 random functions
τ1, . . . , τN called trials with event{τi = 1} is the success of trial number i and
s =
∑N
i=1 τi is the number of successful trials. Let xi = Pr [τi = 1] = E [τi] and

X =
∑N
i=1 xi = E [s].

Lemma 3 If 0 ≤ α ≤ X/2 then Pr [s ≤ α] < e−XXα/α!.

3 An Uniform Analysis of Algorithm A-Universal

In this section, we present an uniform analysis of Algorithm A-Universal that
applies to all versions of the online set multicover problems, i.e., OSC, OSCk,
WOSC and WOSCk. Abusing notations slightly, define c(S ′) =

∑
S∈S ′ cS for

any subcollection of sets S ′ ⊆ S. Our bound on the competitive ratio will be

influenced by the parameter κ defined as: κ = min
i∈J & S∈Si∩T ∗

{
c(Si ∩ T ∗)

cS

}
. It



is easy to check that κ =




1 for OSC and WOSC
k for OSCk

≥ 1 for WOSCk
. The main result proved

in this section is the following theorem.

Theorem 1. The expected competitive ratio E [r(m,d, k)] of Algorithm A-Universal
is at most

max
{
1+ 5(log2(m+ 1) + 1), 1+ (1+ log2(m+ 1))

(
2+ ln

(
d

κ(log2(m+ 1) + 1)

))}

Corollary 4
(a) For OSC, WOSCand WOSCk, setting κ = 1 we obtain E [r(m,d, k)] to
be at most log2m lnd plus lower order terms.
(b) For OSCk, setting κ = k, we obtain E [r(m,d, k)] to be at most

max
{
6+ 5 log2(m+ 1), 1+ (1+ log2(m+ 1))

(
2+ ln

(
d

k log2(m+ 1)

))}

.

In the next few subsections we prove the above theorem.

3.1 The Overall Scheme

We first roughly describe the overall scheme of our analysis. The average cost
of a run of A-Universal is the sum of average costs that are incurred when
elements i ∈ J are received. We will account for these costs by dividing these
costs into three parts cost1 +

∑
i∈J costi2 +

∑
i∈J costi3 where:

cost1 ≤ c(T ∗) upper bounds the total cost incurred by the algorithm for select-
ing sets in T ∩ T ∗.

costi2 is the cost of selecting sets from Si − T ∗ in line A13 for each i ∈ J .
costi3 is the cost of selecting sets from Si − T ∗ in line A16 for each i ∈ J .

We will use the accounting scheme to count these costs by creating the following
three types of accounts:

account(T ∗);
account(S) for each set S ∈ T ∗ − T ;
account(i) for each received element i ∈ J .

cost1 obviously adds at most 1 to the average competitive ratio; we will charge
this cost to account(T ∗). The other two kinds of costs, namely costi2+costi3
for each i, will be distributed to the remaining two accounts. Let L(m) be a
function of m satisfying L(m) ≤ 1 + log2(m + 1) and let D = d

κ(log2(m+1)+1) .
The distribution of charges to these two accounts will satisfy the following:

–
∑
i∈J account(i)≤ L(m) · c(T ∗). This claim in turn will be satisfied by:



• dividing the optimal cost c(T ∗) into pieces ci(T ∗) for each i ∈ J such
that

∑
i∈J ci(T ∗) ≤ c(T ∗); and

• showing that, for each i ∈ J , account(i)≤ L(m) · ci(T ∗).
–
∑
S∈T ∗account(S)≤ L(m) · max{4, lnD+ 1} · c(T ∗).

This will obviously prove an expected competitive ratio of at most the maximum
of 1+ 5(log2(m+ 1) + 1) and 1+ (log2(m+ 1) + 1)(2+ lnD), as promised.

We will perform our analysis from the point of view of each received element
i ∈ J . To define and analyze the charges we will define several quantities:

µ(i) the value of µ calculated in line A8 after receiving i
ξ(i) the sum of αp[S]’s over S ∈ Si − T ∗ at the time when i is received
a(i) |T ∩ Si − T ∗| at the time when i is received
Λ(S) log2(m · αp[S] + 1) for each S ∈ S; it changes during the execution of A-Universal

Finally, let ∆(X) denote the amount of change (increase or decrease) of a
quantity X when an element i is processed.

3.2 The role of Λ(S)

Our goal is to ensure that
∑
S∈T ∗−T account(S) is bounded by at most max{4, lnD+

1} times
∑
S∈T ∗ cSΛ(S). For a S ∈ Si ∩ T ∗ − T corresponding to the case when

element i ∈ J is processed, we will do this by ensuring that ∆(account(S)), the
change in account(S), is at most a suitable multiple of ∆(cSΛ(S)). Roughly, we
will partition the sets in T ∗ − T into the so-called “heavy” and “light” sets that
we will define later and show that

– for a light set, ∆(account(S)) will be at most ∆(cSΛ(S)), and
– for a heavy set ∆(account(S)) will be at most max{4, lnD+ 1}∆(cSΛ(S)).

The general approach to prove that ∆(account(S)) is at least some multiple of
∆(cSΛ(S)) will generally involve two steps:

– ∆(cSΛ(S)) ≥ min{cS, µ(i)};
– ∆(account(S)) is at most a multiple of min{cS, µ(i)}.

Of course, such an approach makes sense only if we can prove an upper bound
on E [Λ(S)]. As a first attempt, the following lemma seems useful.

Lemma 5 E [Λ(S)] ≤ log2(m+ 1).

How does Λ(S) increase when A-Universal handles its element i? A pre-
liminary glance at tha algorithm suggests the following. First we calculate µ in
line A8, then we calculate p[S] in line A10 to be at least µ(i)

cS

1
m (m · αp[S] + 1),

then we increase αp[S] by p[S], thus we increase m · αp[S] + 1 by a factor of
at least 1 +

µ(i)
cS

. Therefore log2(m · αp[S] + 1) seems to increase by at least

log2(1+
µ(i)
cS

).



However, some corrections may need to be made to the upper bound of
AveΛ(S) in Lemma 5 to ensure that log2(m · αp[S] + 1) increases by at least
log2(1 +

µ(i)
cS

) for the very last time p[S] and consequently αp[S] is updated.
The reason for this is that in line A10 of algorithm AUn we calculate p[S] ←
min
{
µ
cS

(
αp[S] + |Si|−1

)
, 1
}

instead of calculating just p[S]← µ
cS

(
αp[S] + |Si|−1

)
and it may be the case that µ

cS

(
αp[S] + |Si|−1

)
> 1. Note that for each S such

a problem may occur only once and for the last increment since if we calcu-
late p[S] = 1 then S is surely inserted to T . Thus, the very last increment of
Λ(S) = log2(m·αp[S]+1) may be smaller than log2(1+

µ(i)
cS

) (and, consequently,

the very last increment of cSΛ(S) may be smaller than cS log2(1+
µ(i)
cS

)). Intead
of separately arguing for this case repeatedly at various places, we handle this
by extending the upper bound for E [Λ(S)] in Lemma 5 so that we can consider
this last increment of cS log2(m ·αp[S] + 1) also to be at least cS log2(1+

µ(i)
cS

).
We omit the details here, but to summarize, we can alter the definition of Λ(S)
so that for S ∈ Si ∩ T ∗ − T

– if cS ≥ µ(i), ∆(Λ(S)) ≥ log2(1+ µ
cS

);
– if cS ≤ µ(i), ∆(Λ(S)) ≥ 1;
– the expected final value of Λ(S) is L(m) < 1+ log2(m+ 1).

Now we are able to prove the following lemma.

Lemma 6 If S ∈ Si ∩ T ∗ − T then ∆(cSΛ(S)) ≥ min{cS, µ(i)}.

3.3 Definition of Light/Heavy Sets and Charges To Light Sets

When an element i is received, we will make charges to account(S) for S ∈
Si ∩ T ∗ − T . Note that these are accounts of at least deficit + a(i) many sets.
We number these sets as S(1), S(2), . . . in nondecreasing order of their costs with.
We will define the last a(i)+1 sets in this ordering as heavy and the rest as light.

Consider the sets inserted to A in lines A5-7, say A(1), . . . , A(deficit). We
pessimistically assume that except for its last — and most costly — element, A
is inserted to T in line A16. We charge the cost of that to the accounts of light
sets — these sets will not receive any other charges. More specifically, we charge
cA(j) to account(S(j)). Because cA(j) ≤ min{cS(j), µ(i)}, this charge is not larger
than ∆(cS(j)Λ(S(j))) by Lemma 6.

3.4 Charges to account(i)

The sum of charges to accounts of heavy set and account(i) can be estimated
as µ(i)ξ(i) + 2µ(i), where the part µ(i)ξ(i) + µ(i) refers to line A13 and the
remaining part µ(i) refers to the cost of line A16 that is not attributed to the
accounts of light sets. To simplify our calculations, we rescale the costs of sets
so µ(i) = 1 and thus cS ≥ 1 for each heavy set S and the sum of charges to
accounts of heavy set and account(i) is simply ξ(i) + 2.



We associate with i a piece ci(T ∗) of the optimum cost c(T ∗):

ci(T ∗) =
∑

S∈Si∩T ∗
cS/|S| ≤ 1

d
c(Si ∩ T ∗) ≤ κ

d
µ(i) = κ/d.

It is then easy to verify that
∑
i∈J ci(T ∗) ≤

∑
i∈J

1
dc(Si ∩ T ∗) ≤ c(T ∩ T ∗) ≤

c(T ∗). As explained in the overview of this approach, we will charge account(i)
in such a way that on average it receives D−1 = L(m)κ/d. We will define a
random events E(i, a) so that the probability of event E(i, a) is a function of
the form p(ξ(i), a) and when such an event happens, we charge account(i) with
some f(ξ(i), a). We will show in the next subsection that the event E(i, a) can
be appropriately defined such that the expected sum of charges is sufficiently
small, i.e., that

∑
a p(X, a)f(X, a) < D−1.

3.5 Charges to Heavy Sets

Let ψ = max {1, lnD− 1}. Suppose that we charge each heavy set S with an
amount of ψ of ξ plus the two additional amounts, for a total of max {3, lnD+ 1}.
Then, ∆(cSΛ(S)) ≥ min{1, cS} ≥ 1 and the maximum charge is within a factor
max {3, lnD+ 1} of ∆(cSΛ(S)).

If ψ(a(i)+1) ≥ ξ(i) we have no problem because we charge a(i)+1 accounts,
each with at most ψ. Otherwise we need to charge account(i) with ξ(i)−ψ(a(i)+
1). We describe this case using the following events: E(i, a) means that a(i) ≤ a.

Let us identify E(i, a) with a zero-one random funtion, and charge(i, ψ, �, x)
is the formula for the charge to account(i) assuming we use ψ, �ψ ≤ X ≤ (�+1)ψ
and ξ(i) = x. If E(i, �− 1) happens, we have to charge account(i) with x− �ψ; if
E(i, �− 2) happens than E(i, a− 1) also happens, so we charged x− �ψ, but we
need to charge account(i) with another ψ. One can see that for each a ≤ � − 2,
if E(i, a) happens we charge account(i) with ψ. One can see that

charge(i, ψ, �, x) = E(i, �− 1)(ξ(i) − �ψ) +ψ

�−2∑
j=0

E(i, ψ, j).

Let C(ψ, �, x) be the estimate of E [charge(i, ψ, �, x)] that uses Lemma 3:

C(ψ, �, x) = e−x


 x�−1

(k− 1)!
(x− �ψ) +ψ

�−2∑
j=0

xj

j!


 .

Lemma 7 If ψ ≥ 2, x ≥ 1 and � = 	x/ψ
 then C(ψ, �, x) ≤ e−(ψ+1).

As a result of the above lemma, setting ψ = max{2, lnD − 1} we conclude
that the average charge to account(i) is at most D−1.



4 Improved Analysis of Algorithm A-Universal for
Unweighted Cases

In this section, we provide improved analysis of the expected competitive ratios
of Algorithm A-Universal or its minor variation for the unweighted cases of
the online set multicover problems. These improvements pertain to providing
improved constants in the bound for E [r(m,d, k)].

4.1 Improved Performance Bounds for OSC

Theorem 2. E [r(m,d, 1)] ≤ log2m lnd, if m > 15(
1
2 + log2m

)
(1+ lnd), otherwise

4.2 Improved Performance Bounds for OSCk

Note that for OSCk we substitute µ = cS = 1 in the psuedocode of Algorithm A-
Universal and that deficit ∈ {0, 1, 2, . . . , k}. For improved analysis, we change
Algorithm A-Universalslightly, namely, line A10 (with µ = cS = 1)

A10 p[S]← min
{(
αp[S] + |Si|−1

)
, 1
}

// probability for this step //

is changed to

A10’ p[S]← min
{(
αp[S] + deficit · |Si|−1

)
, 1
}

// probability for this step //

Theorem 3. With the above modification of Algorithm A-Universal,

E [r(m,d, k)] ≤
(
1
2 + log2m

)
·
(
2 ln dk + 3.4

)
+ 1+ 2 log2m if k ≤ (2e) · d

1+ 2 log2m otherwise

4.3 Lower Bounds on Competitive Ratios for OSCk and WOSCk

Lemma 1. For any k, there exists an instance of OSCk and WOSCk for
almost all values of |V | and |S | such that any deterministic algorithm must

have a competitive ratio of Ω
(

max
{
1,

log
|S|
k log

|V|
k

log log
|S|
k +log log

|V|
k

})
for OSCk and

Ω
(

log |S| log |V |
log log |S|+log log |V |

)
for WOSCk.
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