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Abstract

Oblivious permutation routing in binary d�cubes has been well studied in the litera�

ture� In a permutation routing� each node initially contains a packet with a destination

such that all the �d destinations are distinct� Kaklamanis� Krizanc and Tsantilas ��� used

the decomposability of hypercubes into Hamiltonian circuits to give an asymptotically opti�

mal routing algorithm� The notion of �destination graph� was 	rst introduced by Borodin

and Hopcroft to derive lower bounds on routing algorithms� This idea was recently used

by Grammatikakis� Hsu and Hwang �
� to construct many�one routing algorithms for the

binary ��cube and 
�cube� In the present paper� further theoretical development is made

along this line� It is then applied to obtain algorithms for binary d�cubes with d up to

��� which compare favorably with the above�mentioned �Hamiltonian circuit� algorithm�

Some results on t�nary cubes with t � 
 are also obtained�
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�� Introduction

Let V � f�x�� � � � � xd� � xi � f�� �� � � � � t � �g� i � �� � � � � dg denote the set of td nodes

of a t�nary d�cube such that for any two nodes u� v � V � there is a link from u to v if their

Hamming distance equals � �hence also a link from v to u�� Thus� at each node� there are

d�t � �� in�links and d�t � �� out�links� In a permutation routing� each node u initially

contains a packet with destination D�u� � V such that fD�u� � u � V g � V � Under the

multiport model� at each step a packet can either stay put or move to an adjacent node by

crossing a link� but no link can be crossed by two packets at the same step� Cohabitation

of multiple packets at the same node is allowed� The goal is to minimize the number of

steps required to route all packets to their respective destinations� Since the diameter of

the t�nary d�cube equals d� d is a �worst�case� lower bound on the required number of

steps� A routing algorithm is called tight if it requires at most d steps� An algorithm is

called minimum�routing if a packet can move from a node to an adjacent one only when

the move corrects an incorrect digit �implying that the total number of steps required for

a packet with origin u equals the Hamming distance between u and D�u� plus the number

of staying�put steps��

Besides minimizing the number of steps� a routing algorithm must also be easy to

implement� namely� the routing at each step should be determined e�ciently� One such

class� called oblivious routing �see Valiant ����� has been extensively studied in the lit�

erature� For an oblivious algorithm� the routing of a packet is determined only by its

origin and destination� In other words� an oblivious algorithm speci	es� for each pair

of nodes u and v� a path Puv from u to v� such that a packet at node u with destina�

tion D�u� moves along the path PuD�u�� Let ��� denote addition modulo t� An obliv�

ious algorithm fPuv � u� v � V g is called translation�invariant �or simply invariant� if

P�u�w��v�w� � Puv�w for all u� v�w � V where the ��� in Puv�w means that the ��w�

operation is applied to each node in the path Puv� Thus an invariant oblivious algorithm

is completely determined by paths Puv with all u � V and v � � � ��� � � � � ���

Since packets cohabiting at a node require a bu�er to store� it is desirable to keep their
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number small� However� this issue is not addressed in the present paper as the worst�case

analysis of the required bu�er size is a very di�cult problem�

Borodin and Hopcroft ��� introduced the notion of destination graph �DG� for oblivious

algorithms� A DG associated with a given node v is the union of paths from all origins to

the destination v �i�e�
S
u�V Puv�� In general� an oblivious algorithm requires to specify

td DG�s� one for each v � V � However� an invariant oblivious algorithm is determined by

only one DG with v � �� which will be referred to as the modular DG�

Borodin and Hopcroft used DG to derive a lower bound ��
p
n������ for oblivious al�

gorithms on the number of steps for an n�node ��indegree graph� Applying to the t�nary

d�cube yields a bound ��t�d������d����� For the binary d�cube� they gave an O��d��� obliv�

ious algorithm by dividing the routing into two subroutings� one on the 	rst d�� dimensions

and the other on the last d�� dimensions �the former subrouting is no longer permutation

but many�one whereas the latter is one�many�� Kaklamanis� Krizanc and Tsantilas ���

improved the ��
p
n������ lower bound to ��

p
n���� which was later shown to be sharp

by Borodin et al� ���� For the binary d�cube� Kaklamanis� Krizanc and Tsantilas ��� gave

an O��d���d� oblivious algorithm by using the decomposability of binary hypercubes into

Hamiltonian circuits� They commented that their algorithm may be practical for small d�

Indeed� in practical applications� hypercubes are mostly binary with relatively small

d� Thus� it is of special interest to 	nd the best routing algorithm for such networks�

Note that the algorithm of Kaklamanis� Krizanc and Tsantilas is neither minimum�routing

nor tight� hence subject to improvement for small d� In this respect� Hwang� Yao and

Grammatikakis �
� gave tight minimum�routing algorithms for binary d�cubes with d � ��

and Grammatikakis� Hsu and Hwang �
� gave tight oblivious minimum�routing algorithms

for binary d�cubes with d � �� In particular� the latter showed a novel use of DG for

constructing a tight oblivious algorithm for the ��cube�

In section �� we develop a theory of constructing invariant oblivious algorithms based

on DG� This enables us to obtain in section 
 tight invariant oblivious minimum�routing

algorithms for the binary ��cube and ��cube� and a �������������step invariant oblivious






minimum�routing algorithm for the ������������cube� We also consider routing algorithms

for the t�nary d�cube with d � �� In the special case t � 
� d � �� Hwang� Yao and Gram�

matikakis �
� obtained a complicated tight invariant oblivious minimum�routing algorithm�

whereas we provide a very simple one using DG with little e�ort� It is also shown that

there exists no tight invariant oblivious algorithm for permutation routing in the t�nary


�cube with t � ��

�� The DG method from a tree viewpoint

In this section� we give results on using DG to construct invariant oblivious algorithms

for permutation routing as well as many�one routing where the latter means that all packets

have distinct origins but not necessarily distinct destinations�

For both permutation and many�one routings� it is clear that no competition for the

same link from two packets can occur at step �� Moreover� for permutation routing� if

after a number of steps� all packets have at most one incorrect digit� then one more step

enables all packets to reach their destinations�

Since we shall only be concerned with invariant oblivious algorithms� it su�ces to

consider a modular DG� A modular DG is viewed as a rooted tree with the root labeled by

the node �� and td� � leaves each labeled by a distinct node of V other than �� such that

the path from a leaf labeled u to the root is Pu�� �Note that we shall make a conscious

distinction between a node and a vertex by referring to a point of V as a node and a

point of a DG as a vertex�� When two paths agree on their last� say� k steps� we shall

merge this portion of the paths so as to simplify the expression of the modular DG� Note

that a simpli	ed DG may have fewer than td � � leaves� As an example� the two modular

DG�s in Figure ��a��b� are equivalent� In Figure ��b�� an edge connecting two vertices

labeled by the same node ��� �� �� indicates staying put at this node� In a simpli	ed DG�

for each node u � V � the path from a vertex labeled u to the root speci	es Pu�� In case

that two �or more� vertices are labeled by u �as in Figure ��b� with u � ��� �� ���� we

would have two candidate paths for Pu�� To avoid such confusion� a ��� is attached to

indicate the right vertex� Using the invariant algorithm induced by the two equivalent
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modular DG�s in Figure �� a packet with origin ��� �� �� and destination � moves along

the path ��� �� �� � ��� �� �� � ��� �� �� � � in 
 steps �staying put at step ��� while a

packet with origin ��� �� �� and destination ��� �� �� moves �by invariance� along the path

��� �� �� � ��� �� �� � ��� �� �� in � steps� Note that in the many�one routing setting� if

two packets have respective origins ��� �� �� and ��� �� �� but common destination �� then

they would compete for the link ��� �� �� � � at step 
� so that the modular DG does not

induce a valid many�one routing algorithm� However� for a permutation routing� the above

situation cannot happen� Indeed� it follows from Lemma 
 below that no competition for

the same link from two packets can occur� so that all packets reach their destinations in 


steps� A modular DG is said to induce a valid permutation �many�one� routing algorithm

if competition for the same link from two packets can never occur under the permutation

�many�one� routing setting� As another example� the modular DG in Figure � induces� by

Lemma � below� a valid many�one routing algorithm which requires � steps to route all

packets� It should be remarked that if a modular DG induces a valid many�one routing

algorithm� then it can be used for the one�many routing setting by reversing the routing

steps� For example� based on the DG in Figure �� in a many�one routing� a packet with

origin ��� �� �� and destination � moves along the path ��� �� �� � ��� �� �� � � and then

stays put at steps 
 and �� while in a one�many routing� a packet with origin � and

destination ��� �� �� moves along the path �� �� �� ��� �� �� � ��� �� ��� �Note that in

the latter case� if the packet moves along the path � � ��� �� �� � ��� �� �� � ��� �� �� �
��� �� ��� then the routing is not considered the reverse of the original many�one routing

algorithm� and the resulting algorithm may not be valid in the one�many routing setting��

Lemma �� Every algorithm for many�one routing in the t�nary d�cube requires at least

d�td � ���d�t� ��e steps �in the worst case��

Proof� Consider the case that all packets have the same destination� say �� As � has

d�t � �� in�links� at most d�t � �� packets can reach � at each step� It follows that

d�td � ���d�t� ��e is a �worst�case� lower bound on the number of steps needed�k
Let T be a modular DG and pu � Pu� the path corresponding to node u� Let jpuj






denote the length of pu� Then l�T � � maxu�V jpuj is simply the depth of T � which is the

�maximum� number of steps required by the invariant algorithm induced by T provided

that no competition for a link from two packets can arise at any step� In the following� we

provide in the many�one routing setting a necessary and su�cient condition for modular

DG�s which guarantees that no two packets compete for the same link at any step�

The root of a modular DG is called a level�� vertex� its children level�� vertices� and

so on� A level�k edge is an edge from a level�k vertex to a level��k��� vertex� For a vertex

x� let u�x � V denote the label of x� An edge from vertex x to vertex y is said to be of type

� if u�x � u�y� and of type �i� j�� � � i � d� � � j � t� � if u�x �� u�y and

�the ith digit of u�x� � j � �the ith digit of u�y� �mod t�

where digits are numbered from left to right� When t � �� type �i� j� will simply be

called type i since j always equals �� Let Sn�u� � �S
���
n �u�� S

���
n �u��� � � S

���
n �u� � d� � �

S
���
n �u� � t � �� denote the type of the n�th edge of path pu �n � �� � � � � jpuj� if it is

not of type �� and let Sn�u� � ��� �� if the n�th edge is of type �� We call S�u� �
�S��u�� � � � � Sjpuj�u�� the type sequence for path pu� Note that

X

fm�S
���
m �u��ig

S���
m �u� � �the ith digit of u� �mod t�� i � �� � � � � d�

Lemma �� A modular DG induces a valid many�one routing algorithm if and only if the

following Condition�C�� holds�

Condition�C��� For any two type sequences S�u� and S�v�� we have

X

fm�n�S
���
m �u��ig

S���
m �u� �

X

fm�n�S
���
m �v��ig

S���
m �v� �mod t�� for all i � �� � � � � d�

whenever Sn�u� � Sn�v� �� ��� �� for some n�

Proof� �Su�ciency� Consider two packets with respective origins u� v�u �� v�� and destina�

tions D�u��D�v�� By invariance� the two packets move along the paths pu�D�u��D�u� and

pv�D�v� �D�v�� with corresponding type sequences S�u�� and S�v�� where u� � u�D�u�
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and v� � v � D�v�� Suppose the packets compete for the same link at step n� Thus

Sn�u�� � Sn�v�� �� ��� ��� and the packets are at the same node� say w� at the beginning of

step n� Then we have for i � �� � � � � d�

�the ith digit of u� w� �
X

fm�n�S
���
m �u���ig

S���
m �u�� �mod t��

�the ith digit of v � w� �
X

fm�n�S
���
m �v���ig

S���
m �v�� �mod t��

By Condition�C��� u � v� a contradiction�

�Necessity� Let T be a modular DG which does not satisfy Condition�C��� i�e� there

exist two type sequences S�u� and S�v� such that Sn�u� � Sn�v� �� ��� ��� but �i�u� �� �i�v�

for some n� i� where

�k�w� �
X

fm�n�S
���
m �w��kg

S���
m �w� �mod t�� k � �� � � � � d� w � u� v�

We need to show that there exists a many�one routing where two packets would

compete for the same link at some step if we use the algorithm induced by T � Consider a

many�one routing in which two packets start at �distinct� nodes u� � ����u�� � � � � �d�u�� and
v� � ����v�� � � � � �d�v�� with respective destinations u� � u and v� � v� Then by invariance�

the 	rst packet moves along the path pu � u� � u with the type sequence S�u�� while

the second packet moves along the path pv � v� � v with the type sequence S�v�� After

n � � steps� both arrive at node �� Then at step n� they compete for the same link since

Sn�u� � Sn�v��k
Remark� The following stronger condition is often easier to check�

Condition�C���� For any two type sequences S�u� and S�v�� we have Sm�u� � Sm�v� for

all m � n whenever Sn�u� � Sn�v� �� ��� �� for some n�

Lemma �� A modular DG induces a valid permutation routing algorithm if and only if

the following Condition�C	� holds�
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Condition�C	�� For any two type sequences S�u� and S�v�� we have either

X

fm�n�S
���
m �u��ig

S���
m �u� �

X

fm�n�S
���
m �v��ig

S���
m �v� �mod t�� for all i � �� � � � � d��i�

or
X

fm�n�S
���
m �u��ig

S���
m �u� �

X

fm�n�S
���
m �v��ig

S���
m �v� �mod t�� for all i � �� � � � � d��ii�

whenever Sn�u� � Sn�v� �� ��� �� for some n�

Proof� �Su�ciency� Following the su�ciency part of the proof of Lemma �� suppose two

packets compete for the same link at step n� which implies Sn�u�� � Sn�v�� �� ��� �� �u� �

u�D�u�� v� � v �D�v��� and the packets are at the same node at the beginning of step

n� By Condition�C��� either �i� or �ii� holds� the former leading to the same origin for

the packets and the latter leading to the same destination� Both are contradictory to the

permutation routing setting�

�Necessity� Let T be a modular DG that does not satisfy Condition�C��� i�e� there exist

two type sequences S�u� and S�v� such that Sn�u� � Sn�v� �� ��� ��� �i�u� �� �i�v�� �i��u� ��
�i��v� for some n� i� i�� where for w � u� v� k � �� � � � � d�

�k�w� �
X

fm�n�S
���
m �w��kg

S���
m �w�� �k�w� �

X

fm�n�S
���
m �w��kg

S���
m �w��

Consider a permutation routing in which two packets start at �distinct� nodes

u� � ����u�� � � � � �d�u��� v� � ����v�� � � � � �d�v��

with �distinct� destinations u�� � �����u�� � � � ���d�u��� v�� � �����v�� � � � ���d�v��� Note

that the k�th digit of u� � u�� equals
P

fm�S
���
m �u��kg

S
���
m �u� which is the k�th digit of u�

Thus u� � u�� � u� and similarly v� � v�� � v� Based on T � the packets move along the

paths pu�u�� and pv � v��� After n� � steps� both arrive at node �� and then compete for

the same link at step n since Sn�u� � Sn�v� �� ��� ��� This completes the necessity part�k
Remark� The following stronger condition is often easier to verify�
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Condition�C	��� For any two type sequences S�u� and S�v�� we have either Sm�u� � Sm�v�

for all m � n or Sm�u� � Sm�v� for all m � n whenever Sn�u� � Sn�v� �� ��� �� for some

n�

A modular DG is called a many�one �permutation� modular DG if it satis	es Con�

dition�C�� �Condition�C���� Obviously� a many�one modular DG is also a permutation

modular DG�

Theorem �� Let T �T �� be a many�one modular DG for the t�nary d�d���cube� Then T and

T � combined yields an invariant oblivious algorithm with l�T �� l�T �� steps for permutation

routing in the �d� d���cube�

Proof� We consider the following ��phase algorithm� For phase �� packets move along the

	rst d dimensions using T �as a many�one routing� while in phase �� packets move along

the last d� dimensions using the reverse of T � �as a one�many routing�� More precisely�

in phase �� the td�d
�

nodes are divided into td
�

subsets of size td where the nodes in a

subset all have the same last d� digits� As each subset is isomorphic to the d�cube� routing

packets in a subset is equivalent to many�one routing in the d�cube� which can be done in

l�T � steps by using T � In phase �� the nodes are divided into subsets of size td
�

where the

nodes in a subset all have the same 	rst d digits� Since routing packets in each of these

subsets is equivalent to one�many routing in the d��cube� it can be done in l�T �� steps by

using the reverse of T ��k
Remark� Consider a situation where each node contains a sequence of packets to be

transmitted to other nodes� Suppose the 	rst packets of all nodes have distinct destinations�

and so do the second �third� � � �� packets� In other words� a sequence of permutation

routings is to be conducted� Then the idea of combining T and T � in Theorem � can

be modi	ed so as to transmit packets two at a time as follows� In phase �� transmit the

	rst packets along the 	rst d dimensions using T while moving the second packets along

the last d� dimensions using T �� In phase �� transmit the 	rst packets along the last

d� dimensions using the reverse of T � while moving the second packets along the 	rst d

dimensions using the reverse of T � Thus two packets per node are successfully transmitted
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in �maxfl�T �� l�T ��g steps� If d � d� and T � T �� this will save the number of steps per

packet by a factor of ��

�� Oblivious algorithms for small d

The following theorem provides invariant oblivious algorithms for binary d�cubes with

d � ���

Theorem �� There exists a 
����������
�	���step invariant oblivious minimum�routing

algorithm for permutation routing in the binary 
���
��������	��cube�

Proof� By Theorem �� it su�ces to construct a 
���������step many�one modular DG

for the binary 
���
����cube� Figures 
�� present such modular DG�s� In these 	gures�

��� indicates staying put� e�g� in the path ��� �� �� �� � ��� �� �� �� � � � ��� �� �� �� �
��� �� �� ��� ��� is interpreted as ��� �� �� ��� Also� if several vertices are labeled by the

same node u� the path pu is determined by the vertex closest to the root� In the following

discussion� we shall abuse notation by writing Sn�u� for S
���
n �u� since the second component

of Sn�u� equals � �unless Sn�u� is type���� It is easily veri	ed that the modular DG�s for

d � 
� �� 
 satisfy Condition�C��� by noting�

�i� Sn�u� � Sn�v� �� � never occurs when there is an edge of type � just before the n�th

edge in the path pu �or pv��

�ii� All paths �with no edges of type �� have cyclic type sequences� i�e� type i is followed

by type i� ��mod d�� Hence Sn�u� � Sn�v� �� � forces Sm�u� � Sm�v� for m � n�

Due to the presence of many type�� edges� it is more involved to check that the

modular DG for d � � satis	es Condition�C���� For any two paths containing no type��

edge� Condition�C��� is easily veri	ed since the corresponding type sequences are cyclic�

Also� note that except for u � ��� �� �� �� �� ��� jpuj � 
 if pu contains no type�� edge� On

the other hand� if a path includes some type�� edge�s�� the type�� edges form one or two

strings each of length at least �� and the non�zero�type edges are divided into two or three

segments each of length at most 
� Thus� if pu contains no type�� edge and pv contains at

least one type�� edge� then �Sn�u� � Sn�v� �� �� can occur only when n � 
� which would
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force Sm�u� � Sm�v� for all m � n due to the cyclic property�

It remains to consider the case that pu and pv each contain some �in fact at least ��

type�� edges� For each i � �� � � � � �� consider all paths including one edge of type i �after

some type�� edges�� In most cases� this type�i edge appears in di�erent positions for dif�

ferent paths� For example� for i � 
� among all paths containing a type�
 edge �after some

type�� edges�� there are only two pairs of paths �fp��������� p��������g� fp��������� p��������g�
such that the two paths in the 	rst �second� pair have the ��th ���th� edge being of type


� For these two pairs� Condition�C��� is satis	ed�k
Remark� The modular DG in Figure 
 attains the lower bound d��	 � ���
�� � ��e � �

given in Lemma �� so that it cannot be improved� The modular DG in Figure � misses

the lower bound ���� by �� It is of interest to know whether the lower bound for this case

can be attained by an invariant oblivious many�one algorithm� In the many�one routing

setting� for d � �� our algorithm requires fewer steps than that of Kaklamanis� Krizanc

and Tsantilas ���� Valiant and Brebner ��� introduced a random �permutation� routing in

binary d�cubes with �d steps which succeeds with high probability� By Theorem �� our

�deterministic� algorithm requires fewer steps �except for d � ���� On the other hand� the

permutation routing algorithm of Kaklamanis� Krizanc and Tsantilas attains the optimal

order as d � 	� Again� our �small d� algorithm requires fewer steps in the permutation

routing setting� �They also proposed to save a factor of two in the time complexity by

dividing the packets into two halves where the 	rst half uses one of the two edge�disjoint

partitions in the many�one routing phase� while the second half uses the second� and

similarly for the one�many routing phase� However� this is shown in ��� to be impossible��

Finally� it may be worth noting that� by the lower bound of Theorem 
��
 in ��� �which is

a slight modi	cation of Theorem � in ����� tight oblivious permutation�routing algorithms

for binary d�cubes cannot exist for d � ���

For the rest of this section� we give partial results on the t�nary d�cubes with d � ��

Lemma �� There exists a d t��
�
e�step invariant oblivious minimum�routing algorithm for

many�one routing in the t�nary 	�cube �t � ���

��



Proof� Consider the following modular DG� The path for node �i� �� �node ��� j�� is simply

�i� �� � ��� �� ���� j� � ��� ���� Let A � f�� � � � � d t��
�
eg and B � fd t��

�
e� � � � � t � �g� For

i� j � A� the path for node �i� j� is �i� j� � �i� ��j � ��� �� where �i� ��j � �i� �� � �i� �� �
� � � � �i� �� �j �i� ���s�� for i� j � B� the path for node �i� j� is �i� j� � �i� ��j�d�t�����e �
��� ��� for i � A� j � B� the path for node �i� j� is �i� j�� ��� j�i � ��� ��� for i � B� j � A�

the path for node �i� j� is �i� j� � ��� j�i�d�t�����e � ��� ��� It is easily checked that

Condition�C��� is met� �Figure � plots the modular DG for t � 
��k
The algorithm given in Lemma � attains the lower bound of Lemma �� since d td��

d�t���
e �

d t��
� e� In particular� for t � 
� we have a tight invariant oblivious minimum�routing

algorithm for many�one routing in the ternary ��cube� By Theorem �� we have a tight

invariant oblivious minimum�routing algorithm for permutation routing in the ternary ��

cube� This algorithm based on the DG method is much simpler than that given in Hwang�

Yao and Grammatikakis �
��

Our 	nal result concerns the existence of a tight invariant oblivious algorithm for per�

mutation routing in the t�nary 
�cube� While such an algorithm can be readily constructed

for t � �� 
� we show in Theorem 
 below that there exists no such algorithm for t � �� �It

is worth noting that as a consequence of Theorem 
��
 in ���� there exists no tight oblivious

algorithm for t � 
����

Theorem �� There exists no tight invariant oblivious algorithm for permutation routing

in the t�nary ��cube with t � ��

Proof� Suppose there is a 
�step invariant oblivious algorithm for permutation routing

with its modular DG denoted by T � Necessarily� all the vertices labeled by nodes �i� j� k�

with i� j� k �� � are level�
 �i�e� leaves of the tree�� Let X denote the set of these vertices so

that jXj � �t����� Let E� denote the set of level�� edges below which there is at least one

�level�
� vertex in X� �Thus� none of the edges in E� can be of type ��� For each e � E��

let Xe � fx � X � x is below eg� Denote the type of an edge e by � �e�� For a level��

edge e � E� which is below a level�� edge e�� if � �e� � �i� j� and � �e�� � �i�� j��� then every

vertex in Xe must have a label with the i�th and i��th digits being j and j�� Consequently�

��



for e � E�� � � jXej � t� ��

Claim �� For x�� y� � X� the following situation cannot happen�

x�
e���x�

e���x�
e����� y�

f���y�
f���y�

f�����

and � �e�� � � �f��� � �e�� �� � �f��� � �e�� �� � �f�� where x�
e���x� signi	es level�
 edge e�

connecting level�
 vertex x� with level�� vertex x��

Proof of Claim �� This follows from the necessity of Condition�C�� in Lemma 
�

For i � �� �� 
� j � �� � � � � t� �� let E��i� j� � fe � E� � � �e� � �i� j�g�
Claim 	� If E��i� j� contains an e� with jXe� j � �� then jE��i� j�j � ��

Proof of Claim 	� Suppose to the contrary that E��i� j� contains another edge f�� Let

x�� x
�
� � Xe� � y� � Xf� with respective paths

x�
e���x�

e���x�
e����� x��

e����x�
e���x�

e�����

y�
f���y�

f���y�
f�����

Since e� �� f� and � �e�� � � �f�� � �i� j�� we must have � �e�� �� � �f�� �otherwise x� �

y�� x� � y�� and e� and e� would be merged with f� and f��� On the other hand� � �f��

must be di�erent from one of � �e�� and � �e��� since the latter two cannot be the same� By

Claim �� this leads to a contradiction� thereby proving Claim ��

Claim �� If jXej � � for all e � E��i� j�� then jE��i� j�j � t� ��

Proof of Claim �� For any two di�erent e�� f� � E��i� j�� let e��f�� be the edge above

e��f��� and e��f�� the level�
 edge below e��f�� that connects the only vertex in Xe��Xf� ��

Since � �e�� �� � �f��� we must have � �e�� � � �f�� �otherwise a contradiction would arise

by Claim ��� Suppose the 	rst component of � �e�� � � �f�� equals i���� i�� Then the 	rst

component of � �e�� �and � �f��� must be the only value in f�� �� 
g other than i and i��

Hence there are only t� � possible choices for � �e��� establishing the claim�

By Claims � and 
 together with the fact that jXej � t� �� we have

j
�

e�E��i�j�

Xej � t� � for each i� j�

�




so that

jXj � j
�

e�E�

Xej � 
�t� ����

This contradicts jXj � �t � ��� if t � 
�

It remains to consider the case t � �� Let X�i� j� �
S
e�E��i�j�

Xe� for i� j � �� �� 
�

Since jX�i� j�j � t� � � 
 and since

j
�

i�j������

X�i� j�j � jXj � ���

it follows that the � setsX�i� j�� i� j � �� �� 
 are disjoint each having 
 elements� Denote by

�a� b�
� the set f�a� b� c� � c � �� �� 
g �similarly for �a�
� b� and �
� a� b��� Letting U�i� j� �

fu�x � x � X�i� j�g� it follows from the proofs of Claims � and 
 that U��� j� must be one of

�j� k�
�� �j�
� k�� k � �� �� 
 �similarly forU��� j� and U�
� j��� We may assume� without loss

of generality� that U��� �� � ��� ��
�� Then U��� �� must be either ��� ��
� or �
� ��
�� since
U��� �� � U��� �� � �� Without loss of generality� assume U��� �� � ��� ��
�� Then U��� ��

is either ��� ��
� or ��� 
�
�� Again� without loss of generality� assume U��� �� � ��� ��
��
Then U��� �� is either ��� ��
� or �
� ��
�� We need to consider these two cases separately�

Case �i�� U��� �� � ��� ��
�� We have U�
� �� � �
�
� �� or �
� 
� ��� If U�
� �� �

�
�
� ��� then U��� 
� � �
�
� �� or �
�
� 
�� the former resulting in no choice for U�
� ��

and the latter resulting in no choice for U�
� 
�� If U�
� �� � �
� 
� ��� then U��� 
� �

�
� 
� �� or �
� 
� 
�� the former resulting in no choice for U�
� �� and the latter resulting in

no choice for U�
� 
��

Case �ii�� U��� �� � �
� ��
�� We have U��� 
� � �
� ��
� or �
� 
�
�� the latter resulting
in no choice for U�
� ��� Thus U��� 
� � �
� ��
�� implying U�
� �� � �
� 
� �� and U�
� �� �
�
� 
� �� and U�
� 
� � �
� 
� 
�� Then there is no choice for U��� 
�� This completes the

proof for t � ��k

��
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