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Overview of this presentation

Nonoverlapping local alignments via rectangles
Previous work
Our results

Future research topics




The Problem

Given aset of weighted axis-parellel rectangles such that

projections of no two rectangles enclose each other on the

the x or y axes
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A pair of rectanglesis independent if their projections on both

axesare digoint

Independent

Goal: Find a maximum-weight independent

not independent  not independent

subset of rectangles



Example
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| an optimal solution
Input of total weight 11.5

Biological motivation

Selection of fragments of high local similarity
between two strings
(between d strings for this problem in d dimensions)

Useful for studies on distances between sequences based
ONn genome rearrangements



Biological motivation

Finding regions of local similaritiesin two sequences
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An approximation algorithms for a maximization problem hasa
performanceratio ( or approximationratio) of r if

value of objective function > 1 maximum value
computed by algorithm = r \_ of objective function



Previous results
Bafna, Narayanan and Ravi (WADS 95)

® NP-complete

® Approximation algorithm with performance ratio 3.25

® Convertsto aproblem of finding maximum-weight
independent set ina 5-clawfree graph

® Gives approximation algorithm for d+1-clawfree graphs

with performanceratio d-1+ 1

d
Halldorsson (SODA’95)

® Approximation algorithm with performance ratio of about 2.5
when all weightsare 1

® Gives approximation algorithm for d+1-clawfree graphs

with performanceratio of about d%lwhen al weightsare 1



Previous results (continued)

Berman (SWAT’ 00)
® approximation algorithm with performanceratio 2.5+€

teking atleast Q (n?) time
d+1
2

findsa

- approximation of a (d+1)-clawfree graph



Our results
( nisthe number of rectangles)

e Approximation algorithm with performance ratio 3
runsin O(n log n) time

® |nddimension, the performanceratio is 2d-1

runsin O(n dlog n) time

We use the two-phase technique of
Berman and DasGupta (STOC' 00)



|dea behind our algorithm

(a) Project each rectangle Rj asinterval | j on the x axis

Two intervals | j and Iy conflict if their corresponding rectangles

Rj and Ry are not independent

Ry
Rk : :
Rj | ; R
T : T
| ! k : ! | | .
J J ; |k :
Ij and L conflict Ij and i conflict
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(b) Apply Two-phase algorithm, appropriately modified

Start with an initially empty stack S

First Phase (Evaluation Phase):

e Look at intervals in non-decreasing order of
endings

e Evaluate a score v for each interval I;
(depends on scores of intervals in S and the
weight of I;)

e If v > 0, push I; to S with score v

Second Phase (Selection Phase):

e pop the intervals in stack S one after another

e if appropriate, add the rectangle corresponding
to this interval to our solution
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Let w(I) denote the weight of interval I

More details of evaluation phase

( evaluation of scores )

score v of an interval Ij IS

w(l;) — > w({)

I,eS; 1, conflicts with I;

More details of selection phase

while ( S is not empty )
{
I = pop(S)
If I does not conflict with already selected
intervals, then insert I to our solution
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For any interval I selected by the algorithm, let

maximum number of intervals in any optimal
=
solution that have right endpoint later than I

Theorem Our algorithm has a performance
ratio of b
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Idea of Proof: The proof proceeds in two
stages.

(a) Consider end of evaluation phase

V(S)

sum of scores of intervals in stack S

P — total weight of an optimal solution

(5) |V(S) > 1P

(b) Consider end of selection phase

V= total weight of our solution

(xx) |V >V(S)
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b=3 for our problem
3 optimal rectangles

4

our rectangle

Inddimensions, b < 2.1
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Future research topics

Improved approximation algorithms

Implement and test performance in actual
applications

Consider more complex objects than
rectangles

Add more meaningful biological constraints
to the problem

etc.
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