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Overview of this presentation
Nonoverlapping local alignments via rectanglesPrevious workOur resultsFuture research topics
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The Problem

Given a set of weighted axis-parellel rectangles such that 

projections of no two rectangles enclose each other on the

the x or y axes

A pair of rectangles is independent if their projections on both

axes are disjoint

independent

not independent not independent

Goal: Find a maximum-weight independent subset of rectangles
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(between strings for this problem in d dimensions)d

Example
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of total weight 11.5

Biological motivation

Selection of fragments of high local similarity

Useful for studies on distances between sequences based

on genome rearrangements

between two strings 
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Biological motivation

Finding regions of local similarities in two sequences
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performance ratio ( or approximation ratio) of r if 

1
r

An approximation algorithms for a has a 

value of objective function
computed by algorithm of objective function

maximization problem

maximum value
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Previous results

Bafna, Narayanan and Ravi (WADS’95)

NP-complete

Approximation algorithm with performance ratio 3.25

Converts to a problem of finding maximum-weight
independent set in a 5-clawfree graph

Gives approximation algorithm for d+1-clawfree graphs

with performance ratio 

Halldorsson (SODA’95)

Approximation algorithm with performance ratio of about 2.5

Gives approximation algorithm for d+1-clawfree graphs

when all weights are 1

d-1+ 1
d

of aboutwith performance ratio when all weights are 1d+1
2
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finds a 

ε
n4Ω ( )taking at least time
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Previous results (continued)

Berman (SWAT’00)

approximation algorithm with performance ratio 

- approximation of a (d+1)-clawfree graph

2.5 + 
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runs in O(n log n) time

d-1
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Approximation algorithm with performance ratio 3

runs in O(n d log n) time

We use the two-phase technique of
Berman and DasGupta (STOC’00)

In d dimension, the performance ratio is 

Our results 
( n is the number of rectangles )

2
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Ij Ikand conflict

Ij Ikand conflict Ij Ikand conflict

Idea behind our algorithm

(a) Project each rectangle as interval on the x axis

if their corresponding rectanglesTwo intervals 

and are not independent
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(b) Apply Two-phase algorithm, appropriately modi�edStart with an initially empty stack SFirst Phase (Evaluation Phase):� Look at intervals in non-decreasing order ofendings� Evaluate a score v for each interval Ij(depends on scores of intervals in S and theweight of Ij)� If v > 0, push Ij to S with score vSecond Phase (Selection Phase):� pop the intervals in stack S one after another� if appropriate, add the rectangle correspondingto this interval to our solution
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Let w(I) denote the weight of interval IMore details of evaluation phase( evaluation of scores )score v of an interval Ij isw(Ij)� XIk2S;Ik con
icts with Ij w(Ik)
More details of selection phasewhile ( S is not empty )f I = pop(S)if I does not con
ict with already selectedintervals, then insert I to our solutiong
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For any interval I selected by the algorithm, let
b = 8><>: maximum number of intervals in any optimalsolution that have right endpoint later than I
Theorem Our algorithm has a performanceratio of b
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Idea of Proof: The proof proceeds in twostages.(a) Consider end of evaluation phase
V (S) = sum of scores of intervals in stack SP = total weight of an optimal solution

(?) V (S) � 1bP
(b) Consider end of selection phaseV = total weight of our solution

(??) V � V (S)
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b 2d-1

=3 for our problemb

our rectangle

3 optimal rectangles

In d dimensions, 

15



Future research topics
� Improved approximation algorithms
� Implement and test performance in actualapplications
� Consider more complex objects thanrectangles
� Add more meaningful biological constraintsto the problemetc.
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