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Introduction
financial stability — an informal view

Typical functions of financial systems in market-based economy

borrowing from surplus units

lending to deficit units

Financial stability (informally)
ability of financial system perform its key functions even in

“stressful” situations

Threats on stability may severely affect the functioning of the
entire economy
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Introduction
study of financial stability — some historical perspectives

study of financial stability — some historical perspectives

research works during “Great Depression” era

Irving Fisher (1933)

John Keynes (1936)

Hyman Minsky (1977)

instabilities are inherent ( i.e., “systemic”) in many capitalist economies

1930s
great depression

stock market collapse (black Tuesday)

major bank failures

high unemployment

⇒⇒⇒ early 1980s
recession ⇒⇒⇒ 2007

recession

stock market collapse

real estate collapse

major bank almost failures
(averted with government aid)

high unemployment
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Introduction
Cause for financial instability

Why financial systems exhibit instability ?

inherent property of system (i.e., systemic) ?

caused by “a few” banks that are “too big to fail” ?

due to government regulation or de-regulation ?

random event, just happens ?

Examples of conflicting opinions by Economists

inherent (Minsky, 1977)

de-regulation of banking and investment laws

Yes (Ekelund and Thornton, 2008)
No (Calabria, 2009)
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Introduction
Motivation for studying financial instability

Why study financial instability ?

scientific curiosity

what is the cause ?

how can we measure it ?

working of a regulatory agency
[Haldane and May, 2011; Berman et al. , 2014]

periodically evaluates network stability

flags aaa network ex ante for further analysis if
its evaluation is weak

too many false positives may
drain the finite resources of the
agency, but vulnerability is too
important to be left for an ex
post analysis

aaa
Flagging a network as vulnerable does not necessarily imply that

such is the case, but that such a network requires further ana lysis
based on other aspects of free market economics that cannot b e
modeled ( e.g., rumors, panic)
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Global stability of financial system
General introduction

To investigate financial networks, one must first settle
questions of the following type:

What is the model of the financial network ?

How exactly failures of individual financial agencies
propagate through the network to other agencies ?

What is an appropriate global stability measure ?
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Global stability of financial system
The model

we extend and formalize an ex ante graph-theoretic models
for banking networks under idiosyncratic shocks

originally suggested by (Nier, Yang, Yorulmazer, Alentorn, 2007)

directed graph with several parameters

shock refers to loss of external assets

network can be

homogeneous (assets distributed equally among banks)
heterogeneous (otherwise)
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Global stability of financial system
The model parameters

Details of the model
parameterized node/edge-weighted directed graph G = (V,E,Γ)G = (V,E,Γ)G = (V,E,Γ)

Γ = {E , I, γ}Γ = {E , I, γ}Γ = {E , I, γ}

E ∈ RE ∈ RE ∈ R total external asset
I ∈ RI ∈ RI ∈ R total inter-bank exposure

γ ∈ (0, 1)γ ∈ (0, 1)γ ∈ (0, 1) ratio of equity to asset

VVV is set of nnn banks

σv ∈ [0, 1]σv ∈ [0, 1]σv ∈ [0, 1] weight of node v ∈ Vv ∈ Vv ∈ V
(∑

v∈V σv = 1
)(∑

v∈V σv = 1
)(∑

v∈V σv = 1
)

share of total external asset for each bank v ∈ Vv ∈ Vv ∈ V

EEE is set of mmm directed edges (direct inter-bank exposures)

w(e) = w(u, v) > 0w(e) = w(u, v) > 0w(e) = w(u, v) > 0 weight of directed edge e = (u, v) ∈ Ee = (u, v) ∈ Ee = (u, v) ∈ E
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Global stability of financial system
Balance sheet details of a node v

Balance sheet details of a node (bank) vvv

Assets

ιv =
∑

(v,u)∈E
w(v, u)ιv =

∑

(v,u)∈E
w(v, u)ιv =

∑

(v,u)∈E
w(v, u) total interbank asset

ev = bv − ιv + σv Eev = bv − ιv + σv Eev = bv − ιv + σv E
effective share of
total external asset aaa

av = bv + σv Eav = bv + σv Eav = bv + σv E total asset

aEaEaE is large enough such that ev > 0ev > 0ev > 0

Liabilities

bv =
∑

(u,v)∈E
w(u, v)bv =

∑

(u,v)∈E
w(u, v)bv =

∑

(u,v)∈E
w(u, v) total interbank

borrowing

cv = γ avcv = γ avcv = γ av net worth (equity)

dvdvdv customer deposit

ℓv = bv + cv + dvℓv = bv + cv + dvℓv = bv + cv + dv total liability

avavav

total asset

=== ℓvℓvℓv

total liability
balance sheet equation
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Global stability of financial system
Two banking network models

Two banking network models

Homogeneous model

EEE and III are equally distributed among the nodes and edges,
respectively

σvσvσv === 1/|V|1/|V|1/|V| for every node v ∈ Vv ∈ Vv ∈ V

w(e)w(e)w(e) === I/|E|I/|E|I/|E| for every edge e ∈ Ee ∈ Ee ∈ E

Heterogeneous model

EEE and III are not necessarily equally distributed among the nodes and
edges, respectively

σv ∈ (0, 1)σv ∈ (0, 1)σv ∈ (0, 1) &
∑

v∈V σv = 1
∑

v∈V σv = 1
∑

v∈V σv = 1

w(e) ∈ R
+w(e) ∈ R
+w(e) ∈ R
+ &

∑

e∈E w(e) = I
∑

e∈E w(e) = I
∑

e∈E w(e) = I
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Global stability of financial system
How to estimate global stability ?

How to estimate global stability ?

Via so-called “stress test”

give some banks a “shock”

see if some of them fail

see how these failures lead to failures of other banks

Next ◮
• how does stress (“shock”) originate ?
• how does stress (“shock”) propagate ?
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Global stability of financial system
How does shock originate ?

Origination of shock (initial bank failures)

Two additional parameters: KKK and ΦΦΦ

0 < K < 10 < K < 10 < K < 1

fraction of nodes that receive the shock

0 < Φ < 10 < Φ < 10 < Φ < 1

severity of the shock

i.e., by how much the external assets decrease

One additional notation: V✖V✖V✖

V✖V✖V✖ subset of nodes that are shocked

(how V✖V✖V✖ is selected will be described later)

(this is the so-called “shocking mechanism”)

Continued to next slide ◮
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Global stability of financial system
How does shock originate ? (continued)

Initiation of shock of magnitude ΦΦΦ

for all nodes v ∈ V✖v ∈ V✖v ∈ V✖, simultaneously decrease their external assets
from evevev by sv = Φ evsv = Φ evsv = Φ ev

parameter ΦΦΦ determines the “severity” of the shock

if sv ≤ cvsv ≤ cvsv ≤ cv, vvv continues to operate with lower external asset

if sv > cvsv > cvsv > cv, vvv dies (i.e., stops functioning) and “propagates” shock

Next ◮ • meaning of “death” (of a node)
• how do shocks propagate ?

Bhaskar DasGupta (UIC) Global Stability of Banking Networks September 16, 2014 15 / 48



Global stability of financial system
How do shocks propagate ?

More notations
deg in(v)deg in(v)deg in(v) === in-degree of node vvv

V✂ (V✖)V✂ (V✖)V✂ (V✖) ===
set of dead nodes
when initial shock is provided to nodes in V✖

shocks propagate in discrete time steps t =t =t = 1,1,1, 2,2,2, 3,3,3, . . .. . .. . .

begining
initial shock

next
time
step

add “ (t)(t)(t)” and “ (V✖)(V✖)(V✖)” to indicate dependence of a variable on ttt and V✖V✖V✖

Examples

cv(t,V✖)cv(t,V✖)cv(t,V✖) : cvcvcv at time ttt
deg in(v, t,V✖)deg in(v, t,V✖)deg in(v, t,V✖) : in-degree of node vvv at time ttt

deg indeg indeg in changes because dead nodes
are removed from the network

V✂ (t,V✖)V✂ (t,V✖)V✂ (t,V✖) : set of dead nodes before time ttt







when initial shock
is provided

to nodes in V✖V✖V✖
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Global stability of financial system
How do shocks propagate ?

shock propagation equation
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Global stability of financial system
How do shocks propagate ?

shock propagation equation
Initial shock

Big bang at t = 1t = 1t = 1 : banking “universe” starts

V✂(1,V✖)V✂(1,V✖)V✂(1,V✖) === ∅∅∅ no node is dead before t = 1t = 1t = 1

cu(1,V✖)cu(1,V✖)cu(1,V✖) ===

{
cu − sucu − sucu − su, if uuu was shocked ( i.e., if u ∈ V✖u ∈ V✖u ∈ V✖)

cucucu, otherwise
net worth of

shocked nodes
decrease
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Global stability of financial system
How do shocks propagate ?

shock propagation equation
Initial shock

Big bang at t = 1t = 1t = 1 : banking “universe” starts

V✂(1,V✖)V✂(1,V✖)V✂(1,V✖) === ∅∅∅ no node is dead before t = 1t = 1t = 1

cu(1,V✖)cu(1,V✖)cu(1,V✖) ===

{
cu − sucu − sucu − su, if uuu was shocked ( i.e., if u ∈ V✖u ∈ V✖u ∈ V✖)

cucucu, otherwise
net worth of

shocked nodes
decrease

Meaning of death of a node

If a nodes’ equity becomes negative, it transmits shock and d rops dead

∀ t0 :∀ t0 :∀ t0 : cv(t0,V✖) < 0 ⇒ v ∈ V✂(t+0 ,V✖)cv(t0,V✖) < 0 ⇒ v ∈ V✂(t+0 ,V✖)cv(t0,V✖) < 0 ⇒ v ∈ V✂(t+0 ,V✖) t+0t
+
0t
+
0 means all times after t0t0t0

continued to next slide ◮
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Global stability of financial system
How do shocks propagate ?

shock propagation equation (continued)

∀ u ∈∀ u ∈∀ u ∈

dead nodes
removed

from network
for all

subsequent times
︷ ︸︸ ︷

V \ V✂ (t,V✖)V \ V✂ (t,V✖)V \ V✂ (t,V✖):::

cu (t + 1,V✖) = cu (t,V✖) -
∑

v :::

(
cv

(

t,V✖

)

<0
)

∧

(
v ∈V\V✂

(

t,V✖

)
)

∧

(
(u,v)∈E

)

min
{

| cv (t,V✖) | , bv

}

deg in (v, t,V✖)
cu (t + 1,V✖) = cu (t,V✖) -

∑

v :::

(
cv

(

t,V✖

)

<0
)

∧

(
v ∈V\V✂

(

t,V✖

)
)

∧

(
(u,v)∈E

)

min
{

| cv (t,V✖) | , bv

}

deg in (v, t,V✖)
cu (t + 1,V✖) = cu (t,V✖) -

∑

v :::

(
cv

(

t,V✖

)

<0
)

∧

(
v ∈V\V✂

(

t,V✖

)
)

∧

(
(u,v)∈E

)

min
{

| cv (t,V✖) | , bv

}

deg in (v, t,V✖)

Next slide: some intuition behind this equation
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Global stability of financial system
How do shocks propagate ?

intuition behind individual terms of shock propagation equ ation
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Global stability of financial system
Comparison with other attribute propagation models

Some other models for propagation of attributes

influence maximization in social networks
[Kempe, Kleinberg,Tardos, 2003; Chen, 2008; Chen, Wang, Yang,
2009; Borodin, Filmus, Oren, 2010]

disease spreading in urban networks
[Eubank, Guclu, Kumar, Marathe, Srinivasan, Toroczkai, Wang,
2004; Coelho, Cruz, Codeo, 2008; Eubank, 2005]

percolation models in physics and mathematics
[Stauffer, Aharony, Introduction to Percolation Theory, 1994]

the model for shock propagation in banking networks is funda mentally
very different from all such models

for detailed comparison, see
P. Berman, B. DasGupta, L. Kaligounder , M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

two measures of global stability
stability index of a network GGG

SI∗(G,T)SI∗(G,T)SI∗(G,T)
minimum number of nodes that need to be shocked
so that all nodes in network GGG are dead within time TTT
(∞∞∞ if all nodes simply cannot be put to death in any way)

SI∗(G,T) = 0.99 |V|SI∗(G,T) = 0.99 |V|SI∗(G,T) = 0.99 |V| stability is good

SI∗(G,T) = 0.01 |V|SI∗(G,T) = 0.01 |V|SI∗(G,T) = 0.01 |V| stability is not so good
higher SI∗(G,T)SI∗(G,T)SI∗(G,T) imply better stability

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

two measures of global stability
stability index of a network GGG

SI∗(G,T)SI∗(G,T)SI∗(G,T)
minimum number of nodes that need to be shocked
so that all nodes in network GGG are dead within time TTT
(∞∞∞ if all nodes simply cannot be put to death in any way)

SI∗(G,T) = 0.99 |V|SI∗(G,T) = 0.99 |V|SI∗(G,T) = 0.99 |V| stability is good

SI∗(G,T) = 0.01 |V|SI∗(G,T) = 0.01 |V|SI∗(G,T) = 0.01 |V| stability is not so good
higher SI∗(G,T)SI∗(G,T)SI∗(G,T) imply better stability

dual stability index of a network GGG

DSI∗ (G,T,K)DSI∗ (G,T,K)DSI∗ (G,T,K)
maximum number of nodes that can be dead within time TTT
if no more than K |V|K |V|K |V| nodes are given the initial shock

higher DSI∗(G,T)DSI∗(G,T)DSI∗(G,T) imply worse stability

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

two measures of global stability
stability index of a network GGG

SI∗(G,T)SI∗(G,T)SI∗(G,T)
minimum number of nodes that need to be shocked
so that all nodes in network GGG are dead within time TTT
(∞∞∞ if all nodes simply cannot be put to death in any way)

SI∗(G,T) = 0.99 |V|SI∗(G,T) = 0.99 |V|SI∗(G,T) = 0.99 |V| stability is good

SI∗(G,T) = 0.01 |V|SI∗(G,T) = 0.01 |V|SI∗(G,T) = 0.01 |V| stability is not so good
higher SI∗(G,T)SI∗(G,T)SI∗(G,T) imply better stability

dual stability index of a network GGG

DSI∗ (G,T,K)DSI∗ (G,T,K)DSI∗ (G,T,K)
maximum number of nodes that can be dead within time TTT
if no more than K |V|K |V|K |V| nodes are given the initial shock

higher DSI∗(G,T)DSI∗(G,T)DSI∗(G,T) imply worse stability

Two types of deaths of network GGG
T = 2T = 2T = 2 violent death!! happens too soon

T = ∞T = ∞T = ∞ slow poisoning, slow but steady

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

some standard concepts from algorithms analysis community

approximation ratio of a maximization or minimization prob lem

OPTOPTOPT === optimal value of the objective function

ρρρ-approximation of a minimization
problem ( ρ ≥ 1ρ ≥ 1ρ ≥ 1)

value of our solution ≤ ρOPT≤ ρOPT≤ ρOPT

ρρρ-approximation of a maximization
problem ( ρ ≥ 1ρ ≥ 1ρ ≥ 1)

value of our solution ≥ OPT
ρ

≥ OPT
ρ≥ OPT
ρ

standard computational complexity classes

P, NPNPNP, APXAPXAPX-hard
︸ ︷︷ ︸

no PTAS assuming P 6= NP6= NP6= NP

, DTIMEDTIMEDTIME
(

nlog log n
)(

nlog log n
)(

nlog log n
)

︸ ︷︷ ︸

quasi-polynomial time
class of problems solvable in nO(log log n)nO(log log n)nO(log log n) time

etc .

standard classes of directed graphs

acyclic, in-arborescence etc .
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

synopsis of theoretical computational complexity results

0 < ε < 10 < ε < 10 < ε < 1 is any constant, 0 < δ < 10 < δ < 10 < δ < 1 is some constant, eee is base of natural log

Network type,
result type

Stability SI∗(G,T)SI∗(G,T)SI∗(G,T)
bound, assumption (if any),

Dual Stability DSI∗(G,T,K)DSI∗(G,T,K)DSI∗(G,T,K)
bound, assumption (if any)

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

synopsis of theoretical computational complexity results

0 < ε < 10 < ε < 10 < ε < 1 is any constant, 0 < δ < 10 < δ < 10 < δ < 1 is some constant, eee is base of natural log

Network type,
result type

Stability SI∗(G,T)SI∗(G,T)SI∗(G,T)
bound, assumption (if any),

Dual Stability DSI∗(G,T,K)DSI∗(G,T,K)DSI∗(G,T,K)
bound, assumption (if any)

Homo-
geneous

T = 2T = 2T = 2
approximation hardness

(1 − ε) ln n(1 − ε) ln n(1 − ε) ln n,
NP 6⊆ DTIMENP 6⊆ DTIMENP 6⊆ DTIME

(
nlog log n

)(
nlog log n

)(
nlog log n

)

T = 2T = 2T = 2, approximation ratio O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

Acyclic, ∀ T > 1∀ T > 1∀ T > 1,
approximation hardness

APXAPXAPX-hard
(
1 − e−1 + ε

)(
1 − e−1 + ε

)(
1 − e−1 + ε

)
−1, P 6= NPP 6= NPP 6= NP

In-arborescence,
∀ T > 1∀ T > 1∀ T > 1, exact solution

O
(
n2
)

O
(
n2
)

O
(
n2
)

time, every node fails
when shocked

O
(
n3
)

O
(
n3
)

O
(
n3
)

time, every node fails
when shocked

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

synopsis of theoretical computational complexity results

0 < ε < 10 < ε < 10 < ε < 1 is any constant, 0 < δ < 10 < δ < 10 < δ < 1 is some constant, eee is base of natural log

Network type,
result type

Stability SI∗(G,T)SI∗(G,T)SI∗(G,T)
bound, assumption (if any),

Dual Stability DSI∗(G,T,K)DSI∗(G,T,K)DSI∗(G,T,K)
bound, assumption (if any)

Homo-
geneous

T = 2T = 2T = 2
approximation hardness

(1 − ε) ln n(1 − ε) ln n(1 − ε) ln n,
NP 6⊆ DTIMENP 6⊆ DTIMENP 6⊆ DTIME

(
nlog log n

)(
nlog log n

)(
nlog log n

)

T = 2T = 2T = 2, approximation ratio O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

Acyclic, ∀ T > 1∀ T > 1∀ T > 1,
approximation hardness

APXAPXAPX-hard
(
1 − e−1 + ε

)(
1 − e−1 + ε

)(
1 − e−1 + ε

)
−1, P 6= NPP 6= NPP 6= NP

In-arborescence,
∀ T > 1∀ T > 1∀ T > 1, exact solution

O
(
n2
)

O
(
n2
)

O
(
n2
)

time, every node fails
when shocked

O
(
n3
)

O
(
n3
)

O
(
n3
)

time, every node fails
when shocked

Hetero-
geneous

Acyclic, ∀ T > 1∀ T > 1∀ T > 1,
approximation hardness (1 − ε) ln n(1 − ε) ln n(1 − ε) ln n, NP 6⊆ DTIMENP 6⊆ DTIMENP 6⊆ DTIME

(
nlog log n

)(
nlog log n

)(
nlog log n

) (
1 − e−1 + ε

)−1(
1 − e−1 + ε

)−1(
1 − e−1 + ε

)−1
, P 6= NPP 6= NPP 6= NP

Acyclic, T = 2T = 2T = 2, approximation hardness nδnδnδ, assumption ( ⋆⋆⋆)†††

Acyclic, ∀ T > 3∀ T > 3∀ T > 3,
approximation hardness 2log1−ε n2log1−ε n2log1−ε n, NP 6⊆ DTIMENP 6⊆ DTIMENP 6⊆ DTIME(n poly(log n))(n poly(log n))(n poly(log n))

Acyclic, T = 2T = 2T = 2,
approximation ratio ‡‡‡ O

(

log
n E wmax wmin σmax

Φ γ (Φ− γ) E wmin σmin wmax

)

O

(

log
n E wmax wmin σmax

Φ γ (Φ− γ) E wmin σmin wmax

)

O

(

log
n E wmax wmin σmax

Φ γ (Φ− γ) E wmin σmin wmax

)

†††See our paper for statement of assumption ( ⋆⋆⋆), which is weaker than the assumption P 6= NPP 6= NPP 6= NP
‡‡‡See our paper for definitions of some parameters in the approx imation ratio

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

brief discussion of a few proof techniques

Theorem
For homogeneous networks, SI∗(G, 2)SI∗(G, 2)SI∗(G, 2) cannot be approximated in
polynomial time within a factor of (1 − ε) ln n(1 − ε) ln n(1 − ε) ln n unless NP ⊆ DTIME

(
nlog log n

)
NP ⊆ DTIME

(
nlog log n

)

NP ⊆ DTIME
(
nlog log n

)

reduction from the dominating set problem for graphs

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

e.g.,

deg in
max = 3deg in
max = 3deg in
max = 3, γ = 0.1γ = 0.1γ = 0.1, Φ = 0.15Φ = 0.15Φ = 0.15

=⇒=⇒=⇒ SI∗(G,SI∗(G,SI∗(G,T) > 0.22T) > 0.22T) > 0.22

network cannot be put to death
without shocking more than 22%
of the nodes

root

maximum
in-degree

Theorem

For homogeneous “rooted in-arborescence” networks,

SI∗(G,SI∗(G,SI∗(G,any T) >
γ

Φ deg in
max

T) >
γ

Φ deg in
max

T) >
γ

Φ deg in
max

where deg in
maxdeg in
maxdeg in
max = max

v∈V

{
deg in(v)

}
= max

v∈V

{
deg in(v)

}

= max
v∈V

{
deg in(v)

}

Moreover, in this case, SI∗(G,SI∗(G,SI∗(G,any T)T)T) can be exactly computed in O(n2)O(n2)O(n2)
time under some mild assumption

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)

⇐
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⇐
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⇐
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⇒
=
⇒
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⇒

=
⇒
=
⇒
=
⇒
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

brief discussion of a few proof techniques

Theorem
For homogeneous networks, SI∗(G, 2)SI∗(G, 2)SI∗(G, 2) admits a polynomial-time

algorithm with approximation ratio O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

O

(

log

(
|V| Φ E

γ (Φ− γ) |E − Φ|

))

︸ ︷︷ ︸

almost O (log |V|)O (log |V|)O (log |V|)

reformulate the problem to that of computing an optimal solu tion of
a polynomial-size ILP

use the greedy approach of [Dobson, 1982] for approximation

careful calculation of the size of the coefficients of the ILP ensures
the desired approximation bound

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

Theorem (homogeneous networks, n = number of nodes)

(a) Assuming P 6= NPP 6= NPP 6= NP, DSI∗(G,any T,K)DSI∗(G,any T,K)DSI∗(G,any T,K) cannot be approximated within a
factor of 1

(1−1/e+ε)
1

(1−1/e+ε)
1

(1−1/e+ε) , for any ε > 0ε > 0ε > 0, even if GGG is a DAG a

(b) If GGG is a rooted in-arborescence then

DSI∗(G,any T,K) < K
n

(

1 + degmax
in

(
Φ
γ − 1

))

DSI∗(G,any T,K) < K
n

(

1 + degmax
in

(
Φ
γ − 1

))

DSI∗(G,any T,K) < K
n

(

1 + degmax
in

(
Φ
γ − 1

))

where degmax
in = max

v∈V

{
deg in(v)

}
degmax

in = max
v∈V

{
deg in(v)

}

degmax
in = max

v∈V

{
deg in(v)

}

Moreover, in this case, DSI∗(G,any T,K)DSI∗(G,any T,K)DSI∗(G,any T,K) can be exactly computed in
O(n3)O(n3)O(n3) time under some mild assumption

aeee is the base of natural logarithm

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

brief discussion of a few proof techniques

Theorem (heterogeneous networks, n = number of nodes)

Under a complexity-theoretic assumption for densest sub-h ypergraph
problem a, DSI∗(G, 2,K)DSI∗(G, 2,K)DSI∗(G, 2,K) cannot be approximated within a ratio of n1−εn1−εn1−ε

even if G is a DAG

a
see B. Applebaum, Pseudorandom Generators with Long Stretch and Low locality from Random Local

One-Way Functions, STOC 2012

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Theoretical (computational complexity and algorithmic) results

brief discussion of a few proof techniques

Theorem
For heterogeneous networks, for any constant 0 < ε < 10 < ε < 10 < ε < 1, it is impossible
to approximate SI∗(G,

︸ ︷︷ ︸
any T > 3

)SI∗(G,
︸ ︷︷ ︸

any T > 3

)SI∗(G,
︸ ︷︷ ︸

any T > 3

) within a factor of 2log1−ε n2log1−ε n2log1−ε n in polynomial

time even if GGG is a DAG unless NP ⊆ DTIME
(
nlog log n

)
NP ⊆ DTIME

(
nlog log n

)

NP ⊆ DTIME
(
nlog log n

)

reduction is from the MINREP problem

MINREP : a graph-theoretic abstraction of two-prover multi-round
protocol for any problem in NPNPNP
Intuitively, the two provers in MINREP correspond to two nodes that
cooperate to kill another specified set of nodes.

proof is a bit technical

culminating to a set of 22 symbolic linear equations between the
parameters that we must satisfy

P. Berman, B. DasGupta, L. Kaligounder, M. Karpinski, Algorithmica (in press)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Empirical results (with some theoretical justifications)

shocking mechanism ΥΥΥ: rule to select an initial subset of nodes to be shocked

Idiosyncratic shocking mechanism
[Eboli, 2004; Nier, Yang, Yorulmazer, Alentorn, 2007]

[Gai. Kapadia, 2010; May, Arinaminpathy, 2010]

[Haldane, May, 2011; Hübsch, Walther, 2012]

select a subset of K |V|K |V|K |V| nodes
uniformly at random from VVV

can occur due to operations risks (frauds) or credit risks

Coordinated shocking mechanism

••• intuitively, nodes that are
“too big to fail” in terms of
their assets are shocked
together

••• belongs to the general
class of non-random cor-
related shocking mecha-
nisms

technical details omitted from this talk

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Empirical results with some theoretical justifications

Banking network generation
why not use “real” networks ?

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Empirical results with some theoretical justifications

Banking network generation
why not use “real” networks ? several obstacles make this desirable goal impossible to a chieve, e.g.

• such networks with all relevant parameters are rarely publicly available

• need hundreds of thousands of large networks to have any stat istical validity
(in our work, we explore more than 700,000 networks)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Empirical results with some theoretical justifications

Banking network generation
why not use “real” networks ? several obstacles make this desirable goal impossible to a chieve, e.g.

• such networks with all relevant parameters are rarely publicly available

• need hundreds of thousands of large networks to have any stat istical validity
(in our work, we explore more than 700,000 networks)

models for simulated networks

directed scale-free (SF) model
degree distribution of nodes follow a power-law

••• defined in [Bar ábasi, Albert, 1999]

••• used by prior researchers such as [Santos,
Cont, 2010; Moussa, 2011; Amini, Cont, Minca,
2011; Cont, Moussa, Santos, 2010]

••• (in our work) generated using the algo-
rithm outlined in [Bollobas, Borgs, Chayes,
Riordan, 2003]

directed Erdös-Rényi (ER) model
∀ u, v ∈ V : Pr

[

(u, v) ∈ E
]

= p∀ u, v ∈ V : Pr
[

(u, v) ∈ E
]

= p∀ u, v ∈ V : Pr
[

(u, v) ∈ E
]

= p

••• used by prior banking network researchers
such as [Sachs, 2010; Gai, Kapadia, 2010;
Markose, Giansante, Gatkowski, Shaghaghi,
2009; Corbo, Demange, 2010]

••• generation algorithm is straightforward

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Empirical results with some theoretical justifications

Banking network generation (continued)

we generated directed SF and directed ER networks
with average degree 3 and average degree 6

In addition, we used Bar ábasi-Albert preferential-attachment SF model to
generate in-arboescence networks

in-arborescence

••• directed rooted tree with all edges oriented towards root

••• belong to the class of “sparsest” connected DAG

(average degree ≈≈≈ 1)

••• belong to the class of “hierarchical” networks root

L1L1L1 L2L2L2 L3L3L3 L4L4L4

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Empirical results with some theoretical justifications

Banking network generation (continued)

For heterogeneous networks, we consider two types of inequity o f distribution
of assets

(0.1,0.95)-heterogeneous
95% of the assets and exposures involve only 10% of banks
a very small minority of banks are significantly larger than t he remaining banks

(0.2,0.60)-heterogeneous
60% of the assets and exposures involve only 20% of banks
less extreme situation: a somewhat larger number of moderat ely large banks

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Summary of simulation environment and explored parameter s pace

parameter explored values for the parameter

network type
homogeneous

} total
number of
parameter

combinations
> 700, 000> 700, 000> 700, 000

(α, β)(α, β)(α, β)-heterogeneous
α = 0.1, β = 0.95α = 0.1, β = 0.95α = 0.1, β = 0.95
α = 0.2, β = 0.6α = 0.2, β = 0.6α = 0.2, β = 0.6

network topology
directed scale-free

average degree 111 (in-arborescence)
average degree 333
average degree 666

directed Erd ös-Rényi
average degree 333
average degree 666

shocking mechanism idiosyncratic, coordinated

number of nodes 50, 100, 30050, 100, 30050, 100, 300
E/IE/IE/I 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.50.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.50.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5

ΦΦΦ 0.5, 0.6, 0.7, 0.8, 0.90.5, 0.6, 0.7, 0.8, 0.90.5, 0.6, 0.7, 0.8, 0.9

KKK 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.90.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.90.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

γγγ 0.05, 0.1, 0.15, . . . ,Φ− 0.050.05, 0.1, 0.15, . . . ,Φ− 0.050.05, 0.1, 0.15, . . . ,Φ− 0.05

To correct statistical biases, for each combination we generated 10 cor responding networks and com-
puted the average value of the stability index over these 10 runs

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of unequal distribution of assets on stability

networks with all nodes having similar external assets disp lay higher
stability over similar networks with fewer nodes having

disproportionately higher external assets

Bhaskar DasGupta (UIC) Global Stability of Banking Networks September 16, 2014 37 / 48



Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of unequal distribution of assets on stability

networks with all nodes having similar external assets disp lay higher
stability over similar networks with fewer nodes having

disproportionately higher external assets

Some theoretical intuition is provided by the following lemma
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of unequal distribution of assets on stability

networks with all nodes having similar external assets disp lay higher
stability over similar networks with fewer nodes having

disproportionately higher external assets

Some theoretical intuition is provided by the following lemma

Lemma
Fix γγγ, ΦΦΦ, EEE, III and the graph GGG. Consider any node v ∈ V✖

v ∈ V✖v ∈ V✖ and suppose that vvv fails due to the initial shock. For every

edge (u, v) ∈ E(u, v) ∈ E(u, v) ∈ E, let ∆ homo(u)∆ homo(u)∆ homo(u) and ∆ hetero(u)∆ hetero(u)∆ hetero(u) be the amount of shock received by node uuu at time t = 2t = 2t = 2 if GGG is
homogeneous or heterogeneous, respectively. Then,

E [∆ hetero(u)] ≥
β

α
E [∆ homo(u)] =

9.5 E [∆ homo(u)] , if (α, β) = (0.1, 0.95)

3 E [∆ homo(u)] , if (α, β) = (0.2, 0.6)
E [∆ hetero(u)] ≥

β

α
E [∆ homo(u)] =

9.5 E [∆ homo(u)] , if (α, β) = (0.1, 0.95)

3 E [∆ homo(u)] , if (α, β) = (0.2, 0.6)
E [∆ hetero(u)] ≥

β

α
E [∆ homo(u)] =

9.5 E [∆ homo(u)] , if (α, β) = (0.1, 0.95)

3 E [∆ homo(u)] , if (α, β) = (0.2, 0.6)

This lemma implies that E [∆ hetero(u)]E [∆ hetero(u)]E [∆ hetero(u)] is much bigger than E [∆ homo(u)]E [∆ homo(u)]E [∆ homo(u)],
and thus more nodes are likely to fail beyond t > 1t > 1t > 1

leading to a lower stability for heterogeneous networks
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of unequal distribution of assets on “residual instability”

for homogeneous networks, if the equity to asset ratio γγγ is close enough to
the severity of the shock ΦΦΦ then the network tends to be perfectly stable,
as one would intuitively expect

however, the above property is not true for highly heterogeneous networks
in the sense that, even when γγγ is close to ΦΦΦ, these networks have a
minimum amount of instability (“residual instability”)

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of unequal distribution of assets on “residual instability”

for homogeneous networks, if the equity to asset ratio γγγ is close enough to
the severity of the shock ΦΦΦ then the network tends to be perfectly stable,
as one would intuitively expect

however, the above property is not true for highly heterogeneous networks
in the sense that, even when γγγ is close to ΦΦΦ, these networks have a
minimum amount of instability (“residual instability”)

to summarize

a heterogeneous network, in contrast to its corresponding homo ge-
neous version, has a residual minimum instability even if its equity
to asset ratio is very large and close to the severity of the shock

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of external assets on stability

E/IE/IE/I controls the total (normalized) amount of external investments of all banks in the network

varying the ratio E/IE/IE/I allows us to investigate the role of the magnitude of total external investments
on the stability of our banking network

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of external assets on stability

E/IE/IE/I controls the total (normalized) amount of external investments of all banks in the network

varying the ratio E/IE/IE/I allows us to investigate the role of the magnitude of total external investments
on the stability of our banking network

for heterogeneous banking networks, global stabilities are affec ted
very little by the amount of the total external asset in the system

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of network connectivity (average degree) on stability

prior observations by Economists

networks with less connectivity are more prone to contagion [Allen and
Gale, 2000]

rationale: more interbank links may also provide banks with a
type of co-insurance against fluctuating liquidity flows

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of network connectivity (average degree) on stability

prior observations by Economists

networks with less connectivity are more prone to contagion [Allen and
Gale, 2000]

rationale: more interbank links may also provide banks with a
type of co-insurance against fluctuating liquidity flows

networks with more connectivity are more prone to contagion [Gai and
Kapadia, 2008]

rationale: more interbank links increases the opportunity for
spreading insolvencies to other banks
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of network connectivity (average degree) on stability

prior observations by Economists

networks with less connectivity are more prone to contagion [Allen and
Gale, 2000]

rationale: more interbank links may also provide banks with a
type of co-insurance against fluctuating liquidity flows

networks with more connectivity are more prone to contagion [Gai and
Kapadia, 2008]

rationale: more interbank links increases the opportunity for
spreading insolvencies to other banks

Actually, both observations are correct depending on the type of network

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

Effect of network connectivity (average degree) on stability

homogeneous network
higher connectivity leads to lower stability

heterogeneous network
higher connectivity leads to higher stability

our paper provides theoretical insights behind these observation s

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

phase transitions of properties of random structures are often seen

Example ( giant component formation in Erdos-Renyi random graphs
∀ u, v ∈ V : Pr

[
(u, v) ∈ E

]
= p∀ u, v ∈ V : Pr

[
(u, v) ∈ E

]
= p∀ u, v ∈ V : Pr

[
(u, v) ∈ E

]
= p

)

p ≤ (1−ε)/np ≤ (1−ε)/np ≤ (1−ε)/n ⇒⇒⇒ with high probability all connected components have size O(log n)O(log n)O(log n)

p ≥ (1+ε)/np ≥ (1+ε)/np ≥ (1+ε)/n ⇒⇒⇒ with high probability at least one connected component has size Ω(n)Ω(n)Ω(n)

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Conclusions based on empirical evaluations

phase transitions of properties of random structures are often seen

Example ( giant component formation in Erdos-Renyi random graphs
∀ u, v ∈ V : Pr

[
(u, v) ∈ E

]
= p∀ u, v ∈ V : Pr

[
(u, v) ∈ E

]
= p∀ u, v ∈ V : Pr

[
(u, v) ∈ E

]
= p

)

p ≤ (1−ε)/np ≤ (1−ε)/np ≤ (1−ε)/n ⇒⇒⇒ with high probability all connected components have size O(log n)O(log n)O(log n)

p ≥ (1+ε)/np ≥ (1+ε)/np ≥ (1+ε)/n ⇒⇒⇒ with high probability at least one connected component has size Ω(n)Ω(n)Ω(n)

phase transition properties of stability

denser ER and SF networks, for smaller value of KKK, show a sharp decrease of stability when γγγ
was decreased beyond a particular threshold

homogeneous in-arborescence networks under coordinated sho cks exhibited a sharp increase
in stability as E/IE/IE/I is increased beyond a particular threshold provided γ ≈ Φ/2γ ≈ Φ/2γ ≈ Φ/2

our paper provides theoretical insights behind this observation

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Global stability of financial system
Empirical results (with some theoretical justifications)

Software
interactive software FIN-STAB implementing shock propaga tion algorithm

available from www2.cs.uic.edu/ ˜ dasgupta/financial-simulator-files

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)Bhaskar DasGupta (UIC) Global Stability of Banking Networks September 16, 2014 43 / 48
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Global stability of financial system
Economic policy implications

when to flag the financial network for potential vulnerabilit ies ?

equity to asset ratios of most banks are low,

or,

the network has a highly skewed distribution of external assets a nd
inter-bank exposures among its banks and the network is sufficien tly
sparse,

or,

the network does not have either a highly skewed distribution of ex ternal
assets and a highly skewed distribution of inter-bank exposures a mong its
banks, but the network is sufficiently dense

B. DasGupta, L. Kaligounder, Journal of Complex Networks 2(3), 313-354 (2014)
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Economic policy implications

3 Future research
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Future research

Future research questions

Our results are only a first step towards understanding
vulnerabilities of banking systems

Further investigate and refine the network model

network topology and parameter issues

network structures that closely resembles “real” banking netwo rks
optimal networks structures for a stable financial system

Effect of “diversified” external investments on the stability
Other notions of stability

percentage of the external assets that remains in the system at the end of
shock propagation

Questions with policy implications

identifications of modifications of network topologies or parameter s to
turn a vulnerable system to a stable one
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Final slide

Thank you for your attention

Questions??
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