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Introduction
Various network measures

Graph-theoretical analysis leads to useful insights for ma ny complex
systems, such as

Ï World-Wide Web

Ï social network of jazz musicians

Ï metabolic networks

Ï protein-protein interaction networks

Examples of useful network measures for such analyses
Ï degree based , e.g.

⊲ maximum/minimum/average degree, degree distribution, . . . . . .

Ï connectivity based , e.g.
⊲ clustering coefficient, largest cliques or densest sub-gra phs, . . . . . .

Ï geodesic based , e.g.
⊲ diameter, betweenness centrality, . . . . . .

Ï other more complex measures
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Introduction
network curvature as a network measure

network measure for this talk
network curvature via (Gromov) hyperbolicity measure

Ï originally proposed by Gromov in 1987 in the context of group theory

⊲ observed that many results concerning the fundamental grou p of a Riemann
surface hold true in a more general context

⊲ defined for infinite continuous metric space with bounded local geometry via
properties of geodesics

⊲ can be related to standard scalar curvature of Hyperbolic manifold

Ï adopted to finite graphs using a so-called 4-node condition
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Basic definitions and notations
Graphs, geodesics and related notations

Graphs, geodesics and related notations

G = (V ,E )G = (V ,E )G = (V ,E ) connected undirected graph of n ≥ 4n ≥ 4n ≥ 4 nodes

u
P
!vu
P
!vu
P
!v path P ≡

(

u0
=u

,u1, . . . ,uk−1,uk
=v

)
P ≡

(

u0
=u

,u1, . . . ,uk−1,uk
=v

)

P ≡
(

u0
=u

,u1, . . . ,uk−1,uk
=v

)
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ℓ(P )ℓ(P )ℓ(P ) length (number of edges) of the path u
P
!vu
P
!vu
P
!v

ui
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!u jui
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!u jui
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!u j sub-path
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ui ,ui+1 , . . . ,u j
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ui ,ui+1 , . . . ,u j
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u
s
!vu
s

!vu
s
!v a shortest path between nodes uuu and vvv

du,vdu,vdu,v length of a shortest path between nodes uuu and vvv

u1u1u1

u2u2u2

u3u3u3

u4u4u4

u5u5u5 u6u6u6

u2
P
!u6u2
P
!u6u2
P
!u6 is the path P ≡

(

u2,u4,u5,u6

)
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u2,u4,u5,u6

)
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(
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)

ℓ(P )ℓ(P )ℓ(P )= 3= 3= 3

du2 ,u6
du2 ,u6du2 ,u6 = 2= 2= 2
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Basic definitions and notations
4 node condition (Gromov, 1987)

Consider four nodes u1,u2,u3,u4u1,u2,u3,u4u1,u2,u3,u4 and the
six shortest paths among pairs of these
nodes u1u1u1

u2u2u2

u3u3u3

u4u4u4

du1,u2
du1,u2du1,u2

du3,u4
du3,u4du3,u4

du1,u3
du1,u3du1,u3

du2,u4
du2,u4du2,u4

du1,u4
du1,u4du1,u4

du2,u3
du2,u3du2,u3
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Definition (hyperbolicity of G)

δ(G) = max
u1,u2,u3,u4

{

δu1,u2,u3,u4

}
δ(G) = max

u1,u2,u3,u4

{

δu1 ,u2,u3,u4

}

δ(G) = max
u1,u2,u3,u4

{

δu1,u2,u3,u4

}
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Basic definitions and notations
Hyperbolic graphs (graphs of negative curvature)

Definition (∆∆∆-hyperbolic graphs)

GGG is ∆∆∆-hyperbolic provided δ(G) ≤∆δ(G) ≤∆δ(G) ≤∆

Definition (Hyperbolic graphs)

If ∆∆∆ is a constant independent of graph parameters, then a ∆∆∆-hyperbolic
graph is simply called a hyperbolic graph
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Definition (∆∆∆-hyperbolic graphs)

GGG is ∆∆∆-hyperbolic provided δ(G) ≤∆δ(G) ≤∆δ(G) ≤∆

Definition (Hyperbolic graphs)

If ∆∆∆ is a constant independent of graph parameters, then a ∆∆∆-hyperbolic
graph is simply called a hyperbolic graph

Example (Hyperbolic and non-hyperbolic graphs)

Tree: ∆(G)= 0∆(G)= 0∆(G)= 0

hyperbolic graph
Chordal (triangulated) graph:
∆(G)= 1/2∆(G)= 1/2∆(G)= 1/2

hyperbolic graph

Simple cycle: ∆(G) = ⌈n/4⌉∆(G)= ⌈n/4⌉∆(G)= ⌈n/4⌉

non-hyperbolic graph

b
b

bb
b
b
b

b b
b

n = 10n = 10n = 10
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Basic definitions and notations
Hyperbolicity of real-world networks

Are there real-world networks that are hyperbolic?

Yes, for example:

Ï Preferential attachment networks were shown to be scaled hy perbolic
⊲ [Jonckheere and Lohsoonthorn, 2004; Jonckheere, Lohsoont horn and Bonahon, 2007]

Ï Networks of high power transceivers in a wireless sensor net work were empirically
observed to have a tendency to be hyperbolic

⊲ [Ariaei, Lou, Jonckeere, Krishnamachari and Zuniga, 2008]

Ï Communication networks at the IP layer and at other levels we re empirically
observed to be hyperbolic

⊲ [Narayan and Saniee, 2011]

Ï Extreme congestion at a very limited number of nodes in a very large traffic network
was shown to be caused due to hyperbolicity of the network tog ether with minimum
length routing

⊲ [Jonckheerea, Loua, Bonahona and Baryshnikova, 2011]

Ï Topology of Internet can be effectively mapped to a hyperbol ic space
⊲ [Bogun, Papadopoulos and Krioukov, 2010]
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Basic definitions and notations
Average hyperbolicity measure, computational issues

Definition (average hyperbolicity)

δave(G)=
1

(n
4

)

∑

u1,u2 ,u3 ,u4

δu1 ,u2,u3 ,u4
δave(G) =

1
(n

4

)

∑

u1,u2 ,u3,u4

δu1,u2 ,u3 ,u4δave(G) =
1

(n
4

)

∑

u1 ,u2,u3 ,u4

δu1,u2 ,u3,u4

expected value of δu1,u2 ,u3,u4δu1,u2 ,u3 ,u4δu1,u2 ,u3,u4 if
u1,u2,u3 ,u4u1,u2,u3,u4u1,u2,u3,u4 are picked uniformly at random

Computation of δ(G)δ(G)δ(G) and δave(G)δave(G)δave(G)

Ï Trivially in O
(

n4
)

O
(

n4
)

O
(

n4
)

time

⊲ Compute all-pairs shortest paths
Floyd–Warshall algorithm
O

(

n3
)

O
(

n3
)

O
(

n3
)

time
⊲ For each combination u1,u2,u3,u4u1,u2,u3,u4u1,u2,u3,u4, compute δu1 ,u2,u3 ,u4

δu1,u2 ,u3,u4δu1 ,u2,u3 ,u4 O
(

n4
)

O
(

n4
)

O
(

n4
)

time

Ï Open problem : can we compute in O
(

n4−ε
)

O
(

n4−ε
)

O
(

n4−ε
)

time?
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Computing hyperbolicity for real networks
Direct calculation

Real networks used for empirical validation
20 well-known biological and social networks

Ï 11 biological networks that include 3 transcriptional regu latory, 5 signalling, 1
metabolic, 1 immune response and 1 oriented protein-protei n interaction networks

Ï 9 social networks range from interactions in dolphin commun ities to the social
network of jazz musicians

Ï hyperbolicity of the biological and directed social networ ks was computed by
ignoring the direction of edges

Ï hyperbolicity values were calculated by writing codes in C u sing standard
algorithmic procedures

Next slide: List of 20 networks Ï
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Computing hyperbolicity for real networks
Direct calculation

11 biological networks

# nodes # edges
1. E. coli transcriptional 311 451
2. Mammalian signaling 512 1047
3. E. coli transcriptional 418 544
4. T-LGL signaling 58 135
5. S. cerevisiae

transcriptional
690 1082

6. C. elegans metabolic 453 2040
7. Drosophila

segment polarity
(6 cells)

78 132

8. ABA signaling 55 88
9. Immune response

network
18 42

10. T cell receptor
signaling

94 138

11. Oriented yeast PPI 786 2445

9 social networks

# nodes # edges
1. Dolphin social network 62 160
2. American

College Football
115 612

3. Zachary Karate Club 34 78
4. Books about

US politics
105 442

5. Sawmill
communication
network

36 62

6. Jazz Musician
network

198 2742

7. Visiting ties
in San Juan

75 144

8. World Soccer
Data, Paris 1998

35 118

9. Les Miserables
characters

77 251
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Computing hyperbolicity for real networks
Direct calculation

Biological networks

Average
degree δaveδaveδave δδδ

1. E. coli transcriptional 1.451.451.45 0.1320.1320.132 222

2. Mammalian Signaling 2.042.042.04 0.0130.0130.013 333

3. E. Coli transcriptional 1.301.301.30 0.0430.0430.043 222

4. T LGL signaling 2.322.322.32 0.2970.2970.297 222

5. S. cerevisiae transcriptional 1.561.561.56 0.0040.0040.004 333

6. C. elegans Metabolic 4.504.504.50 0.0100.0100.010 1.51.51.5

7. Drosophila segment polarity 1.691.691.69 0.6760.6760.676 444

8. ABA signaling 1.601.601.60 0.3020.3020.302 222

9. Immune Response Network 2.332.332.33 0.2860.2860.286 1.51.51.5

10. T Cell Receptor Signalling 1.461.461.46 0.3230.3230.323 333

11. Oriented yeast PPI 3.113.113.11 0.0010.0010.001 222

social networks

Average
degree δaveδaveδave δδδ

1. Dolphins social network 5.165.165.16 0.2620.2620.262 222

2. American College Football 10.6410.6410.64 0.3120.3120.312 222

3. Zachary Karate Club 4.584.584.58 0.1700.1700.170 111

4. Books about US Politics 8.418.418.41 0.2470.2470.247 222

5. Sawmill communication 3.443.443.44 0.1620.1620.162 111

6. Jazz musician 27.6927.6927.69 0.1400.1400.140 1.51.51.5

7. Visiting ties in San Juan 3.843.843.84 0.4220.4220.422 333

8. World Soccer data, 199819981998 3.373.373.37 0.2700.2700.270 2.52.52.5

9. Les Miserable 6.516.516.51 0.2780.2780.278 222

Ï Hyperbolicity values of almost all networks are small

Ï For all networks δaveδaveδave is one or two orders of magnitude smaller than δδδ

⊲ Intuitively, this suggests that value of δδδ may be a rare deviation from typical
values of δu1,u2 ,u3 ,u4δu1,u2,u3 ,u4δu1,u2 ,u3 ,u4 for most combinations of nodes {u1,u2 ,u3,u4}{u1,u2,u3,u4}{u1,u2,u3 ,u4}

Ï No systematic dependence of δδδ on number of nodes/edges or average
degree
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Computing hyperbolicity for real networks
Direct calculation

Definition (Diameter of a graph)

D = maxu,v

{

du,v

}
D = maxu,v

{

du,v

}

D = maxu,v

{

du,v

}

longest shortest path

Fact

δ≤ D/2δ≤ D/2δ≤ D/2 small diameter implies small hyperbolicity

We found no systematic dependence of δδδ on DDD
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Fact

δ≤ D/2δ≤ D/2δ≤ D/2 small diameter implies small hyperbolicity

We found no systematic dependence of δδδ on DDD

For more rigorous checks of hyperbolicity of finite graphs
and

for evaluation of statistical significance of the hyperboli city measure
see our paper

R. Albert, B. DasGupta and N. Mobasheri,
Topological implications of negative curvature for biolog ical and social networks.

Physical Review E 89(3), 032811 (2014)
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Implications of hyperbolicity

We discuss topological implications of hyperbolicity some what informally

Precise Theorems and their proofs are available in our paper
R. Albert, B. DasGupta and N. Mobasheri,

Topological implications of negative curvature for biolog ical and social
networks.

Physical Review E 89(3), 032811 (2014)
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Implications of hyperbolicity
Hyperbolicity and crosstalk in regulatory networks

Definition (Path chord and chord)

p a t h - c h o r d

v
u4

u5

u3

u0

u2

u1
c h o r d

u4

u5

u3

u0

u2

u1
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Implications of hyperbolicity
Hyperbolicity and crosstalk in regulatory networks

Definition (Path chord and chord)

p a t h - c h o r d

v
u4

u5

u3

u0

u2

u1
c h o r d

u4

u5

u3

u0

u2

u1

Theorem (large cycle without path-chord imply large hyperbolicity)

GGG has a cycle of kkk nodes which has no path-chord ⇒⇒⇒ δ≥ ⌈k/4⌉δ≥ ⌈k/4⌉δ≥ ⌈k/4⌉

Corollary
Any cycle containing more than 4δ4δ4δ nodes must have a path-chord

Example

δ< 1δ< 1δ< 1⇒⇒⇒GGG is chordal graph

Next slide: implications for regulatory networks Ï
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Implications of hyperbolicity
Hyperbolicity and crosstalk in regulatory networks

An example of a regulatory network

Network associated to the
Drosophila segment

polarity

G. von Dassow, E. Meir, E.
M. Munro and G. M. Odell,
Nature 406, 188-192 (2000)
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Implications of hyperbolicity
Hyperbolicity and crosstalk in regulatory networks

Hyperbolicity and crosstalk in regulatory networks

short-cuts in long feedback loops

node regulates itself through a long feedback loop
⇒⇒⇒ this loop must have a path-chord
⇒⇒⇒ a shorter feedback cycle through the same node

a node

interpreting chord or short path-chord as crosstalk
“source” regulates “target” through two long paths

⇒⇒⇒ must exist a crosstalk path between these two paths
c r o s s t a l k

targetsource

number of crosstalk paths increases at least linearly with t otal length of two paths

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Geodesic triangles and crosstalk paths

Geodesic triangles and crosstalk paths

u0u0u0 u2u2u2

u1u1u1

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Geodesic triangles and crosstalk paths

Geodesic triangles and crosstalk paths

shortest path

u0u0u0 u2u2u2

u1u1u1

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Geodesic triangles and crosstalk paths

Geodesic triangles and crosstalk paths

shortest path

u0u0u0 u2u2u2

u1u1u1

u0,1u0,1u0,1

u0,2u0,2u0,2

u1,2u1,2u1,2

du0,u0,1 =

⌊
du0,u1 +du0,u2 −du1,u2

2

⌋

du1,u0,1 =

⌈
du1,u2 +du1,u0 −du2,u0

2

⌉

du1,u0,1 =du1,u1,2 du0,u0,1 =du0,u0,2

du2,u0,2 =du2,u1,2

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Geodesic triangles and crosstalk paths

shortest path

u0u0u0 u2u2u2

u1u1u1

u0,1u0,1u0,1

u0,2u0,2u0,2

u1,2u1,2u1,2
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⌊
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2

⌋
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⌈
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⌉
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du2,u0,2 =du2,u1,2

d
v,v ′

d
v

,v
′ d

v
,v

′

✎

✍

☞

✌
∀v∀v∀v in one path ∃v ′∃v ′∃v ′ in the other path such that dv ,v ′ ≤ max

{

6δ, 2
}

dv ,v ′ ≤ max
{

6δ, 2
}

dv ,v ′ ≤ max
{

6δ, 2
}

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)

Bhaskar DasGupta (UIC) Negative curvature for networks November 29, 2014 23 / 52



Implications of hyperbolicity
Implications of geodesic triangles and crosstalk paths for regulatory networks

Implications of geodesic triangles for regulatory network s

Consider feedback or feed-forward loop formed by the
shortest paths among three nodes

We can expect short cross-talk paths between these
shortest paths

⇓⇓⇓
Feedback/feed-forward loop is nested with additional

feedback/feed-forward loops
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Implications of geodesic triangles and crosstalk paths for regulatory networks

Implications of geodesic triangles for regulatory network s

Consider feedback or feed-forward loop formed by the
shortest paths among three nodes

We can expect short cross-talk paths between these
shortest paths

⇓⇓⇓
Feedback/feed-forward loop is nested with additional

feedback/feed-forward loops

Empirical evidence [R. Albert, Journal of Cell Science 118, 4947-4957 (2005)]

Network motifs a are often nested

Two generations of nested assembly
for a common E. coli motif
[DeDeo and Krakauer, 2012]

a
e.g., feed-forward or feedback loops of small number of nodes
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Implications of hyperbolicity
Hausdorff distance between shortest paths

Definition (Hausdorff distance between two paths P1P1P1 and P2P2P2)

dH (P1,P2)
def
= max

{

max
v1∈P1

min
v2 ∈P2

{

dv1 ,v2

}

, max
v2 ∈P2

min
v1 ∈P1

{

dv1 ,v2

} }

dH (P1,P2)
def
= max

{

max
v1 ∈P1

min
v2 ∈P2

{

dv1 ,v2

}

, max
v2 ∈P2

min
v1∈P1

{

dv1 ,v2

} }

dH (P1,P2)
def
= max

{

max
v1∈P1

min
v2∈P2

{

dv1 ,v2

}

, max
v2 ∈P2

min
v1 ∈P1

{

dv1 ,v2

} }

small Hausdorff distance implies every node of either path i s close to some node of the
other path
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dH (P1,P2) ≤ max { 6δ, 2 }dH (P1,P2) ≤ max { 6δ, 2 }dH (P1,P2) ≤ max { 6δ, 2 }
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Implications of hyperbolicity
Hausdorff distance between shortest paths

this result versus our previous path-chord result

path-chord result

P2P2P2

u0u0u0 u2u2u2

P1P1P1

long cycle ⇒⇒⇒ there is a path chord

this result

P2P2P2

u0u0u0 u2u2u2

P1P1P1

d
v

,v
′ d

v
,v

′

dH (P1,P2) ≤ max{ 6δ, 2 }dH (P1,P2)≤ max{ 6δ, 2 }dH (P1,P2) ≤ max{ 6δ, 2 }

Which result is more general in nature ?
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Implications of hyperbolicity
A notational simplification

A notational simplification

unless G is a tree or a complete graph ( KnKnKn), δ> 0δ> 0δ> 0

δ> 0 ≡ δ≥ 1/2δ> 0 ≡ δ≥ 1/2δ> 0 ≡ δ≥ 1/2

δ≥ 1/2 ⇒ max{ 6δ, 2 } = 6δδ≥ 1/2 ⇒ max { 6δ, 2 } = 6δδ≥ 1/2 ⇒ max { 6δ, 2 } = 6δ

Hence, we will simply write 6δ6δ6δ instead of max { 6δ, 2 }max{ 6δ, 2 }max { 6δ, 2 }
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Implications of hyperbolicity
Distance between geodesic and arbitrary path

Distance from a shortest path u0
s
!u1u0
s
!u1u0
s
!u1 to another arbitrary path u0

P
!u1u0
P
!u1u0
P
!u1

nnn is the number of nodes in the graph ℓ (P )ℓ (P )ℓ (P ) is length of path PPP

u0u0u0 u1u1u1vvv

P ≡P ≡P ≡u0
P
!u1u0
P
!u1u0
P
!u1

arbitrary node

shortest path u0
s
!u1u0
s
!u1u0
s
!u1
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Distance from a shortest path u0
s
!u1u0
s
!u1u0
s
!u1 to another arbitrary path u0

P
!u1u0
P
!u1u0
P
!u1

nnn is the number of nodes in the graph ℓ (P )ℓ (P )ℓ (P ) is length of path PPP

u0u0u0 u1u1u1vvv

P ≡P ≡P ≡u0
P
!u1u0
P
!u1u0
P
!u1

arbitrary node

v ′v ′v ′

dv ,v ′dv ,v ′dv ,v ′

∃v ′∃v ′∃v ′ dv ,v ′ ≤ 6δ log2ℓ(P )
︸ ︷︷ ︸

< 6δ log2 n

dv ,v ′ ≤ 6δ log2ℓ(P )
︸ ︷︷ ︸

< 6δ log2 n

dv ,v ′ ≤ 6δ log2ℓ(P )
︸ ︷︷ ︸

< 6δ log2 n

O(log n)(logn)(log n) if δδδ is constant
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Implications of hyperbolicity
Distance between geodesic and arbitrary path

An interesting implication of this bound

u0u0u0 u1u1u1vvv

PPP

shortest path

v ′v ′v ′

dv ,v ′dv ,v ′dv ,v ′

∃v ′ dv ,v ′ ≤ 6δ log2ℓ(P )∃v ′ dv ,v ′ ≤ 6δ log2ℓ(P )∃v ′ dv ,v ′ ≤ 6δ log2ℓ(P )
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Implications of hyperbolicity
Distance between geodesic and arbitrary path

An interesting implication of this bound

=
γ

=
γ

=
γ

assume ∀v ′ ∈P dv ,v ′ ≥ γ∀v ′ ∈P dv ,v ′ ≥ γ∀v ′ ∈P dv ,v ′ ≥ γ

u0u0u0 u1u1u1vvv

PPP
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Implications of hyperbolicity
Distance between geodesic and arbitrary path

An interesting implication of this bound

=
γ

=
γ

=
γ

assume ∀v ′ ∈P dv ,v ′ ≥ γ∀v ′ ∈P dv ,v ′ ≥ γ∀v ′ ∈P dv ,v ′ ≥ γ

⇒⇒⇒ ℓ(P )≥ 2

γ
6δ

= Ω

(

2
Ω(γ))

if δδδ is constant

ℓ(P )≥ 2

γ
6δ

= Ω

(

2
Ω(γ))

if δδδ is constant

ℓ(P ) ≥ 2

γ
6δ

= Ω

(

2
Ω(γ))

if δδδ is constant

u0u0u0 u1u1u1vvv

PPP

Next: better bounds for approximately short paths Ï
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Implications of hyperbolicity
Approximately short path

Why consider approximately short paths ?

Regulatory networks

Up/down-regulation of a target node is mediated by two or mor e “close to shortest” paths
starting from the same regulator node

Additional “very long” paths between the same regulator and target node do not
contribute significantly to the target node’s regulation

targetsource

Definition εεε-additive-approximate short path PPP

ℓ(P )
length of PPP

≤ℓ(P )
length of PPP

≤ℓ(P )
length of PPP

≤ length of shortest path +ε+ε+ε
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Implications of hyperbolicity
Approximately short path

Why consider approximately short paths ?

Algorithmic efficiency reasons

Approximate short path may be faster to
compute as opposed to exact shortest path

Routing and navigation problems
(traffic networks)

Routing via approximate short path

Definition µµµ-approximate short path u0
P
!uk =

(

u0,u1 , . . . ,uk

)
u0

P
!uk =

(

u0,u1, . . . ,uk

)

u0
P
!uk =

(

u0,u1, . . . ,uk

)

ℓ
(

ui
P
!u j

)
ℓ
(

ui
P
!u j

)

ℓ
(

ui
P
!u j

)

length of sub-path
from ui to u j

≤ µ≤ µ≤ µ dui ,u j
dui ,u jdui ,u j

distance
between

ui and u j

for all 0≤ i < j ≤ k0 ≤ i < j ≤ k0 ≤ i < j ≤ k

u0=v0u0=v0u0=v0 u1u1u1 u2u2u2

u3=v2u3=v2u3=v2

u4u4u4 u5u5u5 u6u6u6 u7=v4u7=v4u7=v4

v1v1v1 v3v3v3 222-approximate path u0
P
!u7 =

(

u0,u1, . . . ,u7

)
u0

P
!u7 =

(

u0,u1, . . . ,u7

)

u0
P
!u7 =

(

u0,u1, . . . ,u7

)

shortest path u0
s

!u7u0
s

!u7u0
s

!u7
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Implications of hyperbolicity
Distance between geodesic and approximately short path

Distance from shortest path to an approximately short
︸ ︷︷ ︸

εεε-additive approximate
or, µµµ-approximate

path u0
P
!u1u0
P
!u1u0
P
!u1

u0u0u0 u1u1u1vvv

P ≡P ≡P ≡u0
P
!u1u0
P
!u1u0
P
!u1

arbitrary node

shortest path u0
s
!u1u0
s
!u1u0
s
!u1

v ′v ′v ′

dv ,v ′dv ,v ′dv ,v ′
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Implications of hyperbolicity
Distance between geodesic and approximately short path

Distance from shortest path to an approximately short
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v ′v ′v ′

dv ,v ′dv ,v ′dv ,v ′

u0
P
!u1u0
P
!u1u0
P
!u1 is εεε-additive approximate

∀v ∃v ′ dv ,v ′ ≤∀v ∃v ′ dv ,v ′ ≤∀v ∃v ′ dv ,v ′ ≤

(

6δ+2
)

log2

(

8
(
6δ+2

)
log2

[

(6δ+2) (4+2ε)
]
+1+ ε

2

)(

6δ+2
)

log2

(

8
(
6δ+2

)
log2

[

(6δ+2) (4+2ε)
]
+1+ ε

2

)(

6δ+2
)

log2

(

8
(
6δ+2

)
log2

[

(6δ+2) (4+2ε)
]
+1+ ε

2

)

O
(

δ log
(

ε+δ logε
))

O
(

δ log
(

ε+δ logε
))

O
(

δ log
(

ε+δ logε
))

depends only on δδδ and εεε

short crosstalk path for small εεε and δδδ
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(

6δ+2
)

log2

((

6µ+2
) (

6δ+2
)

log2

[

(6δ+2)
(

3µ+1
)

µ
]

+µ
)(

6δ+2
)

log2

((

6µ+2
) (

6δ+2
)

log2

[

(6δ+2)
(

3µ+1
)

µ
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)(
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log2
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log2
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(

δ log
(
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(

δ log
(
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O
(

δ log
(

µδ
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depends only on δδδ and µµµ

short crosstalk path for small µµµ and δδδ
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Implications of hyperbolicity
Distance between geodesic and approximately short path

Contrast the new bounds with the old bound of dv ,v ′ = O
(

δ logℓ(P )
)

dv ,v ′ = O
(

δ logℓ(P )
)

dv ,v ′ = O
(

δ logℓ(P )
)

du0 ,u1
du0 ,u1du0 ,u1 is the length of a shortest path between u0u0u0 and u1u1u1

u0
P
!u1u0
P
!u1u0
P
!u1 is εεε-additive approximate

ℓ(P )≤ du0 ,u1 +εℓ(P ) ≤ du0,u1 +εℓ(P )≤ du0 ,u1 +ε

Old bound

O
(

δ log
(

ε+du0 ,u1

))
O

(

δ log
(

ε+du0 ,u1

))

O
(

δ log
(

ε+du0 ,u1

))

New bound

O
(

δ log
(

ε+δ logε
))

O
(

δ log
(

ε+δ logε
))

O
(

δ log
(

ε+δ logε
) ) no dependency

on du0 ,u1
du0,u1du0 ,u1

u0
P
!u1u0
P
!u1u0
P
!u1 is µµµ-approximate

ℓ(P )≤µdu0 ,u1
ℓ(P )≤µdu0 ,u1ℓ(P ) ≤µdu0 ,u1

Old bound

O
(

δ
(

log
(

µdu0 ,u1

)))
O

(

δ
(

log
(

µdu0 ,u1

)))

O
(

δ
(

log
(

µdu0 ,u1

)))

New bound

O
(

δ log
(

µδ
))

O
(

δ log
(

µδ
))

O
(

δ log
(

µδ
)) no dependency

on du0,u1
du0 ,u1du0 ,u1
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Implications of hyperbolicity
Distance between geodesic and approximately short path

Distance from an approximately short
︸ ︷︷ ︸

εεε-additive approximate
or, µµµ-approximate

path u0
P
!u1u0
P
!u1u0
P
!u1 to a shortest path

for simplified exposition, we show bounds only in asymptotic O(·)(·)(·) notation
please refer to our paper for more precise bounds

u0u0u0 u1u1u1vvv

P ≡P ≡P ≡u0
P
!u1u0
P
!u1u0
P
!u1

arbitrary node

shortest path u0
s
!u1u0
s
!u1u0
s
!u1

v ′v ′v ′

dv ′,vdv ′,vdv ′,v
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Distance between geodesic and approximately short path

Distance from an approximately short
︸ ︷︷ ︸

εεε-additive approximate
or, µµµ-approximate

path u0
P
!u1u0
P
!u1u0
P
!u1 to a shortest path

for simplified exposition, we show bounds only in asymptotic O(·)(·)(·) notation
please refer to our paper for more precise bounds

u0u0u0 u1u1u1vvv

P ≡P ≡P ≡u0
P
!u1u0
P
!u1u0
P
!u1

arbitrary node

shortest path u0
s
!u1u0
s
!u1u0
s
!u1

v ′v ′v ′

dv ′,vdv ′,vdv ′,v

u0
P
!u1u0
P
!u1u0
P
!u1 is µµµ-approximate

∀v ′ ∃v dv ′ ,v ≤∀v ′ ∃v dv ′,v ≤∀v ′ ∃v dv ′ ,v ≤O
(
µδ log

(
µδ

))
O

(
µδ log

(
µδ

) )

O
(
µδ log

(
µδ
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depends only on δδδ and µµµ
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Implications of hyperbolicity
Distance between geodesic and approximately short path

Distance from approximate short path P1P1P1
︸ ︷︷ ︸

arbitrary node vvv

to approximate short path P2P2P2
︸ ︷︷ ︸

nearest node v ′v ′v ′

u0u0u0 u1u1u1

P2P2P2

P1P1P1
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vvv
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arbitrary node vvv

to approximate short path P2P2P2
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nearest node v ′v ′v ′

u0u0u0 u1u1u1
v ′′v ′′v ′′

P2P2P2
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arbitrary node
vvv

shortest path

go to any shortest path

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)

Bhaskar DasGupta (UIC) Negative curvature for networks November 29, 2014 35 / 52



Implications of hyperbolicity
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nearest node v ′v ′v ′

u0u0u0 u1u1u1
v ′′v ′′v ′′

P2P2P2
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arbitrary node
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Implications of hyperbolicity
Distance between geodesic and approximately short path

Distance from approximate short path P1P1P1
︸ ︷︷ ︸

arbitrary node vvv

to approximate short path P2P2P2
︸ ︷︷ ︸

nearest node v ′v ′v ′

we sometimes overestimate quantities to simplify expressi on

P1P1P1 is ε1ε1ε1-additive approximate
P2P2P2 is ε2ε2ε2-additive approximate

O
(

ε1 +δ log (ε1 ε2)+δ logδ
)

O
(

ε1 +δ log(ε1 ε2)+δ logδ
)

O
(

ε1 +δ log (ε1 ε2)+δ logδ
)

P1P1P1 is εεε-additive approximate
P2P2P2 is µµµ-approximate

O
(

ε+δ log
(

εµ
)

+δ2 log logε
)

O
(

ε+δ log
(

εµ
)

+δ2 loglogε
)

O
(

ε+δ log
(

εµ
)

+δ2 loglogε
)

P1P1P1 is µµµ-approximate
P2P2P2 is εεε-additive approximate

O
(

µδ log
(

µδ
)

+ε+δ logε
)

O
(

µδ log
(

µδ
)

+ε+δ logε
)

O
(

µδ log
(

µδ
)

+ε+δ logε
)

P1P1P1 is µ1µ1µ1-approximate
P2P2P2 is µ2µ2µ2-approximate

O
(

µ1δ log
(

µ1δ
)

+δ logµ2

)
O

(

µ1δ log
(

µ1δ
)

+δ logµ2

)

O
(
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(
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)

+δ logµ2

)
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Implications of hyperbolicity
Distance between geodesic and approximately short path

Interesting implications of these improved bounds

u0u0u0 u1u1u1vvv

approximately short path PPP

shortest path

v ′v ′v ′

dv ,v ′dv ,v ′dv ,v ′
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Implications of hyperbolicity
Distance between geodesic and approximately short path

To wrap it up, approximate shortest paths look like the follo wing cartoon
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Implications of hyperbolicity
Distance between geodesic and approximately short path

To wrap it up, approximate shortest paths look like the follo wing cartoon

Interpretation for regulatory networks
Ï It is reasonable to assume that, when up- or down-regulation of a target node is

mediated by two or more approximate short paths starting from the same regulator
node, additional very long paths between the same regulator and target node do not
contribute significantly to the target node’s regulation

Ï We refer to the short paths as relevant , and to the long paths as irrelevant

Ï Then, our finding can be summarized by saying that

almost all relevant paths between two nodes have crosstalk paths
between each other
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Outline of talk

1 Introduction

2 Basic definitions and notations

3 Computing hyperbolicity for real networks

4 Implications of hyperbolicity of networks
Hyperbolicity and crosstalk in regulatory networks
Geodesic triangles and crosstalk paths
Identifying essential edges and nodes in regulatory networks
A social network application

Bhaskar DasGupta (UIC) Negative curvature for networks November 29, 2014 39 / 52



Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of node s

integer parameters used in this result

κ≥ 4κ≥ 4κ≥ 4 α> 0α> 0α> 0 r > 3(κ−2)δr > 3(κ−2)δr > 3(κ−2)δ

Example: 5 1 9δ+19δ+19δ+1

u0u0u0

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)

Bhaskar DasGupta (UIC) Negative curvature for networks November 29, 2014 40 / 52



Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of node s

integer parameters used in this result

κ≥ 4κ≥ 4κ≥ 4 α> 0α> 0α> 0 r > 3(κ−2)δr > 3(κ−2)δr > 3(κ−2)δ

Example: 5 1 9δ+19δ+19δ+1

u0u0u0
r

u1u1u1

u2u2u2

≥ 3κδ≥ 3κδ≥ 3κδ

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)

Bhaskar DasGupta (UIC) Negative curvature for networks November 29, 2014 40 / 52



Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of node s

integer parameters used in this result

κ≥ 4κ≥ 4κ≥ 4 α> 0α> 0α> 0 r > 3(κ−2)δr > 3(κ−2)δr > 3(κ−2)δ

Example: 5 1 9δ+19δ+19δ+1

r
+
α

r
+
α
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of node s

integer parameters used in this result

κ≥ 4κ≥ 4κ≥ 4 α> 0α> 0α> 0 r > 3(κ−2)δr > 3(κ−2)δr > 3(κ−2)δ

Example: 5 1 9δ+19δ+19δ+1

u0u0u0
r

u1u1u1

u2u2u2

u3u3u3

u4u4u4

vvv

ααα

ααα

γγγ

consider any shortest path PPP between u3u3u3 and u4u4u4

PPP must look like this

PPPγ= du0,v ≤γ= du0,v ≤γ= du0,v ≤ r −
(

3
2
κ−1

)

δr −
(

3
2
κ−1

)
δr −

(
3
2
κ−1

)

δ

r −Θ (κδ)r −Θ (κδ)r −Θ (κδ)
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of node s

integer parameters used in this result

κ≥ 4κ≥ 4κ≥ 4 α> 0α> 0α> 0 r > 3(κ−2)δr > 3(κ−2)δr > 3(κ−2)δ

Example: 5 1 9δ+19δ+19δ+1

u0u0u0
r

u1u1u1

u2u2u2

u3u3u3

u4u4u4

vvv

ααα

ααα

γγγ

consider any shortest path PPP between u3u3u3 and u4u4u4

PPP must look like this

PPPγ= du0,v ≤γ= du0,v ≤γ= du0,v ≤ r −
(

3
2
κ−1

)

δr −
(

3
2
κ−1

)
δr −

(
3
2
κ−1

)

δ

r −Θ (κδ)r −Θ (κδ)r −Θ (κδ)
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of node s

Corollary (of previous results)

u0u0u0
r

u1u1u1

u2u2u2

u3u3u3

u4u4u4

≥ 3κδ≥ 3κδ≥ 3κδ

ααα

ααα

PPP

consider any path PPP between u3u3u3 and u4u4u4

suppose that PPP does not intersect the shaded region

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)

Bhaskar DasGupta (UIC) Negative curvature for networks November 29, 2014 41 / 52



Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of node s

Corollary (of previous results)

u0u0u0
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u1u1u1

u2u2u2

u3u3u3

u4u4u4

≥ 3κδ≥ 3κδ≥ 3κδ

ααα

ααα

PPP

very
long
path

consider any path PPP between u3u3u3 and u4u4u4

suppose that PPP does not intersect the shaded region
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α
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α
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Ω
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α
δ
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2
Ω

(
α
δ
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α
δ
+κ

)

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)

Bhaskar DasGupta (UIC) Negative curvature for networks November 29, 2014 41 / 52



Implications of hyperbolicity
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Influence of a node on the geodesics between other pair of node s

Corollary (of previous results)
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Ω
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α
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Ω
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2Θ(α+κ)
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if δδδ is constant
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory ne tworks

shortest path

usourceusourceusource utargetutargetutarget
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Interesting implications of these bounds for regulatory ne tworks
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory ne tworks

ξ=O(δ)ξ=O(δ)ξ=O (δ)

sh o r test
path

shortest
pat h

sh o r t est
path

shortest pat h

umiddleumiddleumiddle

usourceusourceusource utargetutargetutarget

All shortest paths between usourceusourceusource and utargetutargetutarget must intersect the ξξξ-neighborhood

Therefore, “knocking out” nodes in ξξξ-neighborhood cuts off all shortest
regulatory paths between usourceusourceusource and utargetutargetutarget
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But, it gets even more interesting !
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Interesting implications of these bounds for regulatory ne tworks

shortest path
shortest path

shortest path
shortest path

usourceusourceusource utargetutargetutarget

But, it gets even more interesting !

shifting the ξξξ-neighborhood does not change claim
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Interesting implications of these bounds for regulatory ne tworks
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory ne tworks
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approximately short paths start intersecting the neighborhood
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im

a t e ly short appro
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2 ξ2 ξ2 ξ
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory ne tworks

umiddleumiddleumiddle

usourceusourceusource utargetutargetutarget

Consider a ball (neighborhood) of radius ξ lognξ lognξ logn (nnn is the number of nodes)

ξ lognξ lognξ logn
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory ne tworks

umiddleumiddleumiddle

usourceusourceusource utargetutargetutarget

All paths intersect the neighborhood

×××

Consider a ball (neighborhood) of radius ξ lognξ lognξ logn (nnn is the number of nodes)

ξ lognξ lognξ logn
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

Empirical estimation of neighborhoods and number of essent ial nodes

We empirically investigated these claims on relevant paths passing through a
neighborhood of a central node for the following two biologi cal networks:

Ï E. coli transcriptional

Ï T-LGL signaling

by selecting a few biologically relevant source-target pai rs

Our results show much better bounds for real networks compar ed to the
worst-case pessimistic bounds in the mathematical theorem s

see our paper for further details
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

The following cartoon informally depicts some of the preced ing discussions
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks

The following cartoon informally depicts some of the preced ing discussions

approximate
g

e o d e s i c

the further we move from the central node

the more a shortest path bends inward towards the central nod e
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks
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eavesdropper may succeed with limited sensor range

eavesdropper need not be a hub
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Implications of hyperbolicity
Identifying essential edges and nodes in regulatory networks
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Outline of talk

1 Introduction

2 Basic definitions and notations

3 Computing hyperbolicity for real networks

4 Implications of hyperbolicity of networks
Hyperbolicity and crosstalk in regulatory networks
Geodesic triangles and crosstalk paths
Identifying essential edges and nodes in regulatory networks
A social network application
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

Visual illustration of a well-known social network

Zachary’s Karate Club (http://networkdata.ics.uci.edu/data.php?id=105)
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

Structural hole in a social network [Burt, 1995; Borgatti, 1997]

Definition (Adjacency matrix of an undirected unweighted graph)











uuu

. . . . . . . . . . . . . . .
...

...
...

...
...

vvv . . . . . . au,vau,vau,v . . . . . .
...

...
...

...
...

. . . . . . . . . . . . . . .











au,v =

{
1, if {u, v} is an edge
0, otherwise

Definition (measure of structural hole at node uuu [Burt, 1995; Borgatti, 1997])

(assume uuu has degree at least 2)

Mu
def
==

∑

v∈V






au,v +av ,u

max
x 6=u

{

au,x +ax,u

} [ 1−
∑

y∈V
y 6=u,v






au,y +ay ,u
∑

x 6=u

(

au,x +ax,u

)









av ,y +ay ,v

max
z 6=y

{

av ,z +az,v

}

















too complicated M
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

Structural hole in a social network [Burt, 1995; Borgatti, 1997]

Definition (Adjacency matrix of an undirected unweighted graph)











uuu

. . . . . . . . . . . . . . .
...

...
...

...
...

vvv . . . . . . au,vau,vau,v . . . . . .
...

...
...

...
...

. . . . . . . . . . . . . . .











au,v =

{
1, if {u, v} is an edge
0, otherwise

Definition (measure of structural hole at node uuu [Burt, 1995; Borgatti, 1997])

(assume uuu has degree at least 2)

Let Nbr(u)Nbr(u)Nbr(u) be set of nodes adjacent to uuu

Mu =
∣
∣Nbr(u)

∣
∣ −

∑

v ,y ∈Nbr(u)

av ,y

∣
∣Nbr(u)

∣
∣

Mu =
∣
∣Nbr(u)

∣
∣ −

∑

v ,y ∈Nbr(u)

av ,y

∣
∣Nbr(u)

∣
∣

Mu =
∣
∣Nbr(u)

∣
∣ −

∑

v ,y ∈Nbr(u)

av ,y

∣
∣Nbr(u)

∣
∣

Next: An intuitive interpretation of MuMuMu Ï
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

An intuitive interpretation of MuMuMu

Definition (weak dominance ≺
ρ,λ

weak
≺
ρ,λ

weak
≺
ρ,λ

weak
)

Nodes v , yv , yv , y are weakly (ρ,λ)(ρ,λ)(ρ,λ)-dominated by
node uuu provided

Ï ρ < du,v ,du,y ≤ ρ+λρ < du,v ,du,y ≤ ρ+λρ < du,v ,du,y ≤ ρ+λ, and

Ï for at least one shortest path PPP

between vvv and yyy , PPP contains a node
zzz such that du,z ≤ ρdu,z ≤ ρdu,z ≤ ρ

ρ=1

λ=2

u

y

v

Definition (strong dominance ≺
ρ,λ
strong≺
ρ,λ
strong≺
ρ,λ
strong )

Nodes v , yv , yv , y are strongly (ρ,λ)(ρ,λ)(ρ,λ)-dominated by
node uuu provided

Ï ρ < du,v ,du,y ≤ ρ+λρ < du,v ,du,y ≤ ρ+λρ < du,v ,du,y ≤ ρ+λ, and

Ï for every shortest path PPP between vvv

and yyy , PPP contains a node zzz such that
du,z ≤ ρdu,z ≤ ρdu,z ≤ ρ

ρ=1

λ=2

u

y

v
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

An intuitive interpretation of MuMuMu

Notation (boundary of the ξξξ-neighborhood of node uuu)

Bξ (u) =
{

v |du,v = ξ
}

Bξ (u) =
{

v |du,v = ξ
}

Bξ (u) =
{

v |du,v = ξ
}

the set of all nodes at a distance of precisely ξξξ from uuu

Observation

MuMuMu === E






number of pairs of nodes v , yv , yv , y such that
v , yv , yv , y is weakly (0

ρ
, 1
λ

)(0
ρ

, 1
λ

)(0
ρ

, 1
λ

)-dominated by uuu

∣
∣
∣
∣
∣

vvv is selected uniformly ran-
domly from

⋃

0
ρ
< j ≤1

λ

B j (u)
⋃

0
ρ
< j ≤1

λ

B j (u)
⋃

0
ρ
< j ≤1

λ

B j (u)






≥≥≥ E




number of pairs of nodes v , yv , yv , y such that
v , yv , yv , y is strongly (0,1)-dominated by uuu

∣
∣
∣
∣

vvv is selected uniformly ran-
domly from

⋃

0< j ≤1

B j (u)
⋃

0< j ≤1

B j (u)
⋃

0< j ≤1

B j (u)





always true
equality does not hold in general

uuu

yyy

vvv

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

Generalize MuMuMu to Mu,ρ,λMu,ρ,λMu,ρ,λ for larger ball of influence of a node
replace (0,1)(0,1)(0,1) by (ρ,λ)(ρ,λ)(ρ,λ)

MuMuMu === E






number of pairs of nodes v , yv , yv , y such that
v , yv , yv , y is weakly (0

ρ
, 1
λ

)(0
ρ

, 1
λ

)(0
ρ

, 1
λ

)-dominated by uuu

∣
∣
∣
∣
∣

vvv is selected uniformly ran-
domly from

⋃

0
ρ
< j ≤1

λ

B j (u)
⋃

0
ρ
< j ≤1

λ

B j (u)
⋃

0
ρ
< j ≤1

λ

B j (u)






Mu,ρ,λMu,ρ,λMu,ρ,λ === E




number of pairs of nodes v , yv , yv , y such that
v , yv , yv , y is weakly (ρ,λ)(ρ,λ)(ρ,λ)-dominated by uuu

∣
∣
∣
∣

vvv is selected uniformly ran-
domly from

⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)





R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

Generalize MuMuMu to Mu,ρ,λMu,ρ,λMu,ρ,λ for larger ball of influence of a node
replace (0,1)(0,1)(0,1) by (ρ,λ)(ρ,λ)(ρ,λ)

Lemma (equivalence of strong and weak domination)

If λ ≥ 6δ log2 nλ ≥ 6δ log2 nλ ≥ 6δ log2 n then

Mu,ρ,λMu,ρ,λMu,ρ,λ
def
==
def
==
def
== E




number of pairs of nodes v , yv , yv , y such that
v , yv , yv , y is weakly (ρ,λ)(ρ,λ)(ρ,λ)-dominated by uuu

∣
∣
∣
∣

vvv is selected uniformly ran-
domly from

⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)





=== E




number of pairs of nodes v , yv , yv , y such that
v , yv , yv , y is strongly (ρ,λ)(ρ,λ)(ρ,λ)-dominated by uuu

∣
∣
∣
∣

vvv is selected uniformly ran-
domly from

⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)





equality holds now
R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

Lemma (equivalence of strong and weak domination)

If λ≥ 6δ log2 nλ≥ 6δ log2 nλ≥ 6δ log2 n then

Mu,ρ,λMu,ρ,λMu,ρ,λ
def
==
def
==
def
== E




number of pairs of nodes v , yv , yv , y such that
v , yv , yv , y is weakly (ρ,λ)(ρ,λ)(ρ,λ)-dominated by uuu

∣
∣
∣
∣

vvv is selected uniformly ran-
domly from

⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)





=== E




number of pairs of nodes v , yv , yv , y such that
v , yv , yv , y is strongly (ρ,λ)(ρ,λ)(ρ,λ)-dominated by uuu

∣
∣
∣
∣

vvv is selected uniformly ran-
domly from

⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)
⋃

ρ< j ≤λ

B j (u)





What does this lemma mean intuitively ?

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

What does this lemma mean intuitively ?

uuu
Bρ(u)Bρ(u)Bρ(u)

ρρρ

λ≥ 6δ log2 nλ≥ 6δ log2 nλ≥ 6δ log2 n

Bρ+λ(u)Bρ+λ(u)Bρ+λ(u)

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

What does this lemma mean intuitively ?

uuu
Bρ(u)Bρ(u)Bρ(u)

ρρρ

either all the shortest paths are
completely inside Bρ+λ(u)Bρ+λ(u)Bρ+λ(u)

λ≥ 6δ log2 nλ≥ 6δ log2 nλ≥ 6δ log2 n

Bρ+λ(u)Bρ+λ(u)Bρ+λ(u)

vvv

�

�

�

�

�

�

�

�

�

Plato

yyy
�

�

�

�

�

�

�

�

�

Socrates

uuu

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

What does this lemma mean intuitively ?

uuu
Bρ(u)Bρ(u)Bρ(u)

ρρρ

or all the shortest paths are
completely outside of Bρ+λ(u)Bρ+λ(u)Bρ+λ(u)

λ≥ 6δ log2 nλ≥ 6δ log2 nλ≥ 6δ log2 n

Bρ+λ(u)Bρ+λ(u)Bρ+λ(u)

vvv

�

�

�

�

�

�

�

�

�

Plato

yyy
�

�

�

�

�

�

�

�

�

Socrates

uuu

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Implications of hyperbolicity
Effect of hyperbolicity on structural holes in social networks

What does this lemma mean intuitively ?

uuu
Bρ(u)Bρ(u)Bρ(u)

ρρρ

but not both !

λ≥ 6δ log2 nλ≥ 6δ log2 nλ≥ 6δ log2 n

Bρ+λ(u)Bρ+λ(u)Bρ+λ(u)

vvv

�

�

�

�

�

�

�

�

�

Plato

yyy
�

�

�

�

�

�

�

�

�

Socrates

uuu

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89 (3), 032811 (2014)
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Final slide

Thank you for your attention

Questions??
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