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Network Privacy Under Active Attack

nodes infected by
-/ malicious attackers

!\i > !

(privacy loving) Users

malicious attackers are interested in sensitive attributes such as
* node degrees
* inter-node distances
e connecitivity of network
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(k, £)-anonymity (Trujillo-Rasua and Yero, 2016)

» {is the maximum number of attacker nodes

> (e. g., estimated through statistical methods)

» Kk is a number indicating a privacy threshold

> prevent adversary from !‘“‘identifying individuals”' with
probability higher than l/x /

Identifying the:“relevant attribute”

\ (for this talk)

distance vector

from attacked nodes
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k-antiresolving set and (k, £)-anonymity

diStvﬁ 'V3

(length of a shortest path between vg and v3)

INustration fork =2, =5

Undirected graph G = (V, E)
V = {VI,VQ, e }Vlg}

Vi V2 V3 V4 V5

S — {Vl, V2,V3, V4, V5}
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minimum cardinality of
any k-antiresolving set
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Related Prior Concepts

« Metric dimension (also called landmarks)

Distance vectors must be mutually non-identical

[Harary & Melter; 1976] [Khuller, Raghavachari & Rosenfeld; 1996]
[Hauptmann, Schmied & Viehmann; 2012]

Similar in flavor to general set cover problem

« Strong metric dimension

Constrained distance vectors

[Oellermann & Peters-Fransen; 2012] [DasGupta & Mobasheri; 2017]

Similar in flavor to the node cover problem
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Other known privacy computational models and concepts

e Multi-party communication context
— [Yao, 1979], [Kushilevitz, 1992]

e (Geometric notions of privacy
— [Feigenbaum, Jaggard, Schapira, 2010],
[Comi, DasGupta, Schapira, Srinivasan, 2012]

* |nformation-theoretic
— [Bar-Yehuda, Chor, Kushilevitz, Orlitsky, 1993]

« Differential privacy (database retrieval context)
— [Dwork, 2006]

« Anonymization approach (like this talk)
— [Backstrom, Dwork, Kleinberg, 2007]
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Problem 1 (metric anti-dimension or ADIM)I

Find a k-antiresolving set S of nodes that maximizes k

Intuitively, it sets an absolute bound /x on the privacy vi-
olation probability of an adversary assuming that the ad-
versary can use any number of attacker nodes
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In practice, however, the number of attacker nodes em-
ployed by the adversary may be limited

This leads us to Problem 2

Problem 2 (k>-metric antidimension or ADIM;k)I

Given k, find a k’-antiresolving node set § such that

e k! >k, and

e | S| is minimized
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N 1S number of nodes

Our Results for Problems 1 and 2'

Theorem 1
(a) Both ADIM and ADIM- can be solved in O (n*) time.

(b) Both ADIM and ADIM: can also be solved in O (“J—/if ")
time ‘““with high probability”’

(i.e., with a probability of at least 1 — n"° for some constant ¢ > 0)

Remark
The randomized algorithm in (b) runs faster that the deter-
ministic algorithm in (a) provided k = w(logn)
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Trade-off: (k, ¢)-anonymity vs. (k’, £')-anonymity
k! >k, 0 <€

(k’, £')-anonymity has smaller privacy violation probability 1/x’
but can only tolerate infection of fewer number £’ of nodes

This leads us to Problem 3

Problem 3 (k_-metric antidimension or ADIM:k)I

Given k, find a k-antiresolving node set § that minimizes | S |
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N 1S number of nodes

Our Results for Problems 3'

Theorem 2
(a) ADIM_y is NP-complete for any k in the range 1 < k < n°
where ) < ¢ < % is any arbitrary constant

even if the diameter of the input graph is 2

(b) Assuming NP ¢ DTIME (n'°s°s™)  there exists a universal
constant & > 0 such that

ADIM_; does not admit a (% In n) -approximation for any integer
k in the range 1 < k < n* for any constant 0 < ¢ < %

even if the diameter of the input graph is 2

(¢) If Kk = n — ¢ for some constant ¢ then ADIM_; can be solved

in polynomial time
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Our Results for Problems 3'

Remarks on Theorem 2

(i) The result in (b) provides a much stronger inapproximability
result compared to that in (a) at the expense of a slightly weaker
complexity-theoretic assumption

(i.e., NP ¢ DTIME (nl°slosn) yg, P £ NP)

(@) For k = 1, the inapproximability ratio in (a) is asymptotically
optimal up to a constant factor

because of the (1 + In(n — 1))-approximation of ADIM_;
in Theorem 3(a)

\ to be discussed next
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N 1S number of nodes

Our Results for Problems 3 (continued)'

k=1

Theorem 3
(a) ADIM_; admits a (1 + In(n — 1) )-approximation in O (n?)
time

(b) If G has at least one node of degree 1 then ADIM_; can be
solved in O (n3) time

(¢) If G does not contain a cycle of 4 edges then ADIM_; can be
solved in O (n3) time
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Some Future Research Questions'

e Is it possible to design a non-trivial approximation algorithm
for ADIM_; fork >17?

We conjecture that a O(logn) -approximation is pos-
sible for ADIM_y for every fixed k

e We provided logarithmic inapproximability result for ADIM_,
for every k roughly up to /n. Can this approximability re-
sult be further improved when k is not a constant ?

We conjecture that the inapproximability factor can
be further improved to () (n?) for some constant() < ¢ < 1
when k is around \/n.

e How about attributes other than distance vectors ?
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“But before we movehf:m, allow me to
belabor the point even further...”
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