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Introduction

Basic notations and maximal shortest paths

v

v

v

Basic notations
Nbr () : set of neighbors of node u
uti v . a shortest path between nodes u and v

du,» : length (number of edges) of us v

diam (G) = max{du,,,} : diameter of graph G
u,v

Uy
27}

u
us

Us

Nbr (uz) ={u1, us, us}

uthvus is the path us—us—ug

dquuﬁ =2
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Introduction

Basic notations and maximal shortest paths

Basic notations

v

Nbr () : set of neighbors of node u

v

v

> u<v: ashortest path between nodes u and v U P

du,» : length (number of edges) of us v

Us Ug
diam (G) = max{du,,,} . diameter of graph G ! -
u,v 3
Definition (maximal shortest path)
us v is maximal if it is not properly included inside
another shortest path
uic
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Basic notations

v

Nbr () : set of neighbors of node u

v

v

> u<v: ashortest path between nodes u and v U - maximal

du,» : length (number of edges) of us v

Us Ug
diam (G) = max{du,,,} : diameter of graph G e o
u,v
Definition (maximal shortest path)
us v is maximal if it is not properly included inside
another shortest path
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Introduction

Strong resolution

Definition (node x strongly resolves pair of nodes u and v)
x >{u, v} if and only if
v is on a shortest path between x and u x> vy x=v is allowed

or
. S .
u is on a shortest path between x and v XerUsrv x=uis allowed
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Introduction

Strong resolution

Definition (node x strongly resolves pair of nodes u and v)
x >{u, v} if and only if

. S S .
v is on a shortest path between x and u Xerveruy x=v is allowed

or
Q S S .
u is on a shortest path between x and v XerUsrv x=uis allowed

Definition (strongly resolving set of nodes V'’ for G)

V' > G if and only if
some node in V' strongly resolves every distinct pair of nodes of G

Vu,veVixeV' x >{uv}
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Introduction

Problem of computing strong metric dimension

Problem of computing strong metric dimension
Problem name  STR-MET-DIM
Instance  undirected graph G=(V,E)
Valid Solution set of nodes V' suchthat V' >G
Objective  minimize |V’
Related notation

sdim (G) =‘glli>nc{ \d }
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Introduction

Problem of computing strong metric dimension

Problem of computing strong metric dimension
Problem name  STR-MET-DIM
Instance  undirected graph G=(V,E)
Valid Solution set of nodes V' suchthat V' >G
Objective  minimize |V’
Related notation

sdim(G)=‘glli>nG{|V'|}

Example (lllustration of STR-MET-DIm)
uy =
V= {ulv Uz, u3}

sdim (G) =3
LG}
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Introduction

Basic concepts related to approximation algorithms

Basic concepts related to approximation algorithms
e.g., see V. Vazirani, Approximation Algorithms, Springer-Verlag, 2001

Minimization problem

Definition (p-approximation algorithm (  algorithm with approximation ratio ~ p))
» runs in time polynomial in  size of input

» produces solution with value < p OPT
optimum
value
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Introduction

Main result of this talk

Main result of this talk '

Theorem (Optimal approximability results for ~ STR-MET-Dim)

» STR-MET-DIM admits a polynomial-time 2-approximation algorithm

» Assuming that the unique games conjecture 2 is true,

STR-MET-DIM does not admit a polynomial-time (2- &)-approximation for
any constant £>0

even if the given graph G satisfies

e diam(G) <2, or
e Gis bipartite and diam(G) <4

for definition of unique games conjecture, see

S. Khot, On the power of unique 2-Prover 1-Round games,
34th ACM Symposium on Theory of Computing, 2002

Bhaskar DasGupta (UIC) Approximability for strong metric dimension

June 24, 2015 8/15



Outline of talk

e Brief discussion of proof techniques

uic

Bhaskar DasGupta (UIC) Approximability for strong metric dimension June 24, 2015 9/15



Introduction

Brief discussion of proof techniques

Brief discussion of proof techniques I

Minimum Node Cover problem ( MNC)

Problem name MNC
Instance  undirected graph G=(V,E)
valid Solution ~ set of nodes V' such that V'n{u,v}+@ for every edge
{u,v}eE
Objective  minimize |V’|
Related notation

_ . ’
MNC(G) = vV {uv} eEl:ll‘l/I}n{u,v}atz{ | v | }
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Introduction

Brief discussion of proof techniques

Brief discussion of proof techniques I

Minimum Node Cover problem ( MNC)

Problem name MNC
Instance  undirected graph G=(V,E)
valid Solution ~ set of nodes V' such that V'n{u,v}+@ for every edge
{u,v}eE
Objective  minimize |V’|
Related notation

_ . ’
MNC(G) = vV {uv} eEI}lll/I}n{u,v}atz{ | | }

Example (lllustration of MNC problem)

uz
V= {uz, u3}

MNc(G) =2
uy

G u3
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Introduction

Brief discussion of proof techniques

Boolean satisfiability problem (SAT)

Problem name SAT

Instance = n Boolean variables xj,x2,...,Xn
s m clauses Cj,Cy,...,Cm over these variables

each clause is OR of some literals

literal is variable or negation of variable

Decision question is ngfcl ACa A\--- A\ Cm satisfiable ?

can we set the variables such that ~ ® is true ?
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Introduction

Brief discussion of proof techniques

Boolean satisfiability problem (SAT)

Problem name SAT

Instance = n Boolean variables xj,x2,...,Xn

s m clauses Cj,Cy,...,Cm over these variables

each clause is OR of some literals

literal is variable or negation of variable

Decision question is q>d§fcl ACa A\--- A\ Cm satisfiable ?

can we set the variables such that ~ ® is true ?

Example (lllustration of SAT)

variables X1, X2, X3, X3 @ is satisfiable
() = (—|leX2)/\(le—!X3VX4)/\(x3) X1=X2=X3=X4 =TRUE
G C (6

v

uic
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Introduction

Brief discussion of proof techniques

Brief discussion of proof techniques I

Fact (S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2-g, Journal of Computer and System
Sciences, 74(3), 335-349, 2008)

6 >0 any arbitrarily small constant

assume unique games conjecture is true

Instance @ of SAT Instance (graph) G of MNC with 7 nodes

@ is satisfiable — MNC(G) < (3+68)n
®@ is NOT satisfiable 9 MNC(G) > (1-6)n

polynomial
time
transformation
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Introduction

Brief discussion of proof techniques

Brief discussion of proof techniques for the result
Assuming that the unique games conjecture is true
STR-MET-DIM does not admit a polynomial-time (2 —€)-approximation
even if diam (G) <2, or even if G is bipartite and diam (G) <4

6 >0 any arbitrarily small constant
assume unique games conjecture is true

Graph G of STR-MET-DIM
with n+|log, n|+1 nodes

Inst @ of SAT Graph G of MNC with 7 nodes h ~
nstance ® o p diam (G) =2

@ is satisfiable —> MNC(G)<(3+6)n - sdim (G) <(} +6) n+logy n+1

® is NOT satisfiable —> MNC(G)2 (1-6)n - sdim (G) 2 (1-6) n

polynomial polynomial
time time
transformation transformation
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Brief discussion of proof techniques

Brief discussion of proof techniques for the result
Assuming that the unique games conjecture is true
STR-MET-DIM does not admit a polynomial-time (2 —€)-approximation
even if diam (G) <2, or even if G is bipartite and diam (G) <4

6 >0 any arbitrarily small constant 1

assume unique games conjecture is true ~2 n

Graph G of STR-MET-DIM
, with n+|log, n|+1 nodes
Instance ® of SAT Graph G of MNC with n nodes . ~

diam (G) =2

@ is satisfiable —> MNC(G)<(3+6)n - sdim (G) <(}+6) n+log,n+1

® is NOT satisfiable —> MNC(G)2 (1-6)n g sdim (G) > (1-6) n

polynomial polynomial
time time
transformation transformation
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Introduction

Brief discussion of proof techniques

Brief discussion of proof techniques for the result

NOT assuming unique games conjecture is true but assuming P #NP
~1.3606
——

STR-MET-DIm does not admit  a polynomial-time (10\/5—21 —&)-approximation
even if diam (G) <2, or even if G is bipartite and diam (G) <4

uic
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Introduction

Brief discussion of proof techniques

Brief discussion of proof techniques for the result

NOT assuming unique games conjecture is true but assuming P #NP
~1.3606
——

STR-MET-DIm does not admit  a polynomial-time (10\/5—21 —&)-approximation
even if diam (G) <2, or even if G is bipartite and diam (G) <4

8 >0 any arbitrarily small constant

[Dinur and Safra, 2005] 5

Graph G of STR-MET-DIM

_ with n+|log, n]+1 nodes

Instance @ of SAT Graph G of MNC with n nodes diam (G) =2

®@ is satisfiable MNC(G) < (10v/5-21+8)n * sdim (G) <(10\/§—21+5)n
+log, n+1

@ is NOT satisfiable —>» MNc(G)>(1-8)n = sdim (G)>(1-8)n

polynomial polynomial
time time
transformation transformation
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Final slide

Thank you for your attention I

Questions??

¥

belabor the point even further...”

uic
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