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SUMMARY

Privacy preserving computation is an important research area and it has become a natural

question to ask about the class of functions that are privately computable. Another active

research area deals with the quantification of privacy of users in large networks and the corre-

sponding investigation of computational complexity issues of computing such quantified privacy

measures. In this thesis we present techniques for analysing and quantifying privacy measures

in multi-agent and networked systems.

In the first part of the thesis, we provide the results of our investigation into the approximate

privacy model introduced by Feigenbaum, Jaggard and Schapira (1). Our results indicate that

for a large class of functions which we call as the tiling functions, a protocol exists that provides

a constant average privacy approximation ratio and such a protocol involves a number of com-

munication rounds linear in the number of monochromatic regions of the function; however,

we show that such a good privacy approximation ratio for tiling functions do not exist in the

worst case. We also discuss extension of the basic setup to more than two players as well as to

non-tiling functions, and provide calculations of average and worst case privacy approximation

ratios of the bisection protocol for several new non-tiling functions.

In the second part of the thesis, we formalize three optimization problems concerning a

privacy measure used for quantifying privacy of users in large networks and provide non-trivial

theoretical computational complexity results for solving these optimization problems. Our

results show the first two optimization problems can be computed efficiently, whereas the third

xi



SUMMARY (Continued)

problem is provably hard to compute within a logarithmic approximation factor. Furthermore,

we also provide computational complexity results for the case when the privacy requirement of

the network is severely restricted, including an efficient logarithmic approximation.

xii



CHAPTER 1

INTRODUCTION

With the arrival of modern internet era, large public data stores of various types have

come to existence to benefit the society as a whole and several research areas such as sociology,

economics and geography in particular. There is widespread usage of sensitive data in networked

environments, as evidenced by distributed computing applications, game-theoretic settings (e.g.,

auctions) and more. On the other hand, malicious entities may violate the privacy of the users

of such a network by analyzing the network or intercepting communication between multiple

agents and deliberately using such privacy violations for deleterious purposes. Hence protecting

the privacy of data in such systems is of much practical importance. There is lot of research

focussed on privacy preserving computations and an important task in that area is to define

privacy measures to quantify privacy (and loss of privacy). In this thesis we present the results

of our investigations into two such privacy measures

1The contents of this chapter are taken from (2; 3), arXiv:1510.08779 [cs.CC]

2Reprinted from Theoretical Computer Science, Vol 457, M. Comi et al. ,On communication protocols
that compute almost privately, 45-58, 2012, with permission from Elsevier

3Algorithmic Game Theory: 4th International Symposium, SAGT 2011, Amalfi, Italy, October 17-19,
2011. Proceedings, On Communication Protocols That Compute Almost Privately, 2011, M. Comi et al.
(© Springer-Verlag Berlin Heidelberg 2011) With permission of Springer

1
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• privacy measures for quantifying privacy of communication protocol between multiple

agents performing a computation

• privacy measures for quantifying privacy of user infomation in large social networks

1.1 Privacy Preserving Communication Protocols

Consider the following interaction between two parties, Alice and Bob. Each of the two

parties, Alice and Bob, holds a private input, xbob and yalice respectively, not known to the

other party. The two parties aim to compute a function f of the two private inputs(Figure 1).

Alice and Bob alternately query each other to make available a small amount of information

about their private inputs, e.g., an answer to a range query on their private inputs or a few bits

of their private inputs. This process ends when each of them has seen enough information to

be able to compute the value of f(xbob, yalice).

This raises the following question:

Can we design a communication protocol whose execution reveals, to both Alice and

Bob, as well as to any eavesdropper, as little information as possible about the others

private input beyond what is necessary to compute the function value?

Note that there are two conflicting constraints: Alice and Bob need to communicate suffi-

cient information for computing the function value, but would prefer not to communicate too

much information about their private inputs. This setting can be generalized in an obvious

manner to d > 1 parties party1, party2, . . . , partyd computing a d-ary f by querying the parties
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Alice Bob

Hypothetical

eavesdropper

communication protocol

n-bit binary

x

n-bit binary
y

both
want to compute

f(x,y)

Figure 1. Two Agents

in round-robin order, allowing each party to broadcast information about its private input (via

a public communication channel).

Over the years computer scientists have explored many quantifications of privacy in com-

putation. Much of this research focused on designing perfectly privacy-preserving protocols,

i.e. , protocols whose execution reveals no information about the parties private inputs beyond

that implied by the outcome of the computation. Unfortunately, perfect privacy is often either

impossible, or infeasibly costly to achieve. To overcome this, researchers have also investigated
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various notions of approximate privacy (1; 4). The first part of the thesis explains the notion

of approximate privacy and lists the results of our research in privacy preserving protocols for

evaluating tiling and non-tiling functions.

1.2 Privacy of Social Networks

Social networks have certainly become an important center of attention in our modern

information society by transforming human relationships into a huge interchange of, very often,

sensitive data. There are many truly beneficial consequences when social network data are

released for justified mining and analytical purposes. For example, researchers in sociology,

economics and geography, as well as vendors in service-oriented systems and internet advertisers

can certainly benefit and improve their performances by a fair study of the social network

data. But, such benefits are definitely not free of cost as dishonest individuals or organizations

may compromise the privacy of its users while scrutinizing a public social network and may

deliberately use such privacy violations for harmful or other unfair commercial purposes. A

common way to handle this kind of unwelcome intrusion on the user’s privacy is to somehow

anonymize the data by removing most potentially identifying attributes. However, even after

such anonymization, often it may still be possible to infer many sensitive attributes of a social

network that may be linked to its users, such as node degrees, inter-node distances or network

connectivity, and therefore further privacy-preserving methods need to be investigated and

analyzed. These additional privacy-preserving methods of social networks are based on the

concept of k-anonymity introduced for microdata in (5). The objective is to make sure that no

database record can be identified again with a probability greater than 1/k.
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Crucial to modelling a social network anonymization process are of course the adversary’s

background knowledge of any object and the structural information about the network that is

available. For example, assuming the involved social network as a simple graph in which indi-

viduals are represented by nodes and relationships between pairs of individuals are represented

by edges, the adversary’s background knowledge about a target (a node) could be the node

degree (6), the node neighborhood (7), etc. In such scenarios, it frequently suffices to develop

attacks to re-identify the individuals and their relationships. Such attacks are usually called

passive (see (8) for more information). Some examples of passive attacks and the corresponding

privacy-preserving methods for social networks can be found in references (6; 7; 9).

In contrast, Backstrom et al. introduced the concept of the so-called active attacks in (10).

Such attacks are mainly based on creating and inserting some nodes (the “attacker nodes”)

controlled by the adversary into the network. These attacker nodes could be newly created

accounts with pseudonymous or forged identities (commonly called Sybil nodes), or existing

legitimate individuals in the network that are in the adversary’s proximity. The goal is then

to establish links with some other nodes in the network (or even links between other nodes) in

order to create some sort of “fingerprints” in the network that will be further released. Clearly,

once the releasing action has been achieved, the adversary could retrieve the fingerprints already

introduced, and use them to re-identify other nodes in the network. Backstrom et al. in (10)

showed that O(
√

log n) attacker nodes in a network could in fact seriously compromise the

privacy of any arbitrary node. In recent years, several research works have appeared that deal
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with decreasing the impact of these active attacks (see, for instance, (11)). For other related

publications on privacy-preserving methods in social networks, see (7; 12; 13).

There are already many well-known active attack strategies for social networks in order to

find all possible vulnerabilities. However, somewhat surprisingly, not many prior research works

have addressed the goal of measuring how resistant is a given social network against these kinds

of active attacks to the privacy. To this effect, very recently a novel privacy measure for social

networks was introduced in (14). The privacy measure proposed there was called the (k, `)-

anonymity, where k is a number indicating a privacy threshold and ` is the maximum number of

attacker nodes that can be inserted into the network; ` may be estimated through some statis-

tical methods1. Trujillo-Rasua and Yero in (14) showed that graphs satisfying (k, `)-anonymity

can prevent adversaries who control at most ` nodes in the network from re-identifying individ-

uals with probability higher than 1/k. This privacy measure relies on a graph parameter called

the k-metric anti-dimension.

Consider a simple connected unweighted graph G = (V,E) and let distu,v be the length

(number of edges) of a shortest path between two nodes u, v ∈ V . For an ordered sequence

S = u1, . . . , ut of nodes of G and a node v ∈ V , the vector dv,−S = (distv,u1 , . . . ,distv,ut) is

called the metric representation of v with respect to S. Based on the above definition, a set

S ⊂ V of nodes is called a k-anti-resolving set for G if k is the largest positive integer such

that for every node v ∈ V \ S there exist at least k − 1 different nodes v1, . . . , vk−1 ∈ V \ S

1Note that other different privacy notions with the same name also exists, e.g. , Feder and Nabar
in (15) investigated (k, `)-anonymity where ` represented the number of common neighbors of two nodes.
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such that dv,−S = dv1,−S = · · · = dvk−1,−S , i.e. , v and v1, . . . , vk−1 have the same metric

representation with respect to S. The k-metric anti-dimension of G, denoted by adimk(G), is

then the minimum cardinality of any k-anti-resolving set in G. Note that k-anti-resolving sets

may not exist in a graph for every k.

The connection between (k, `)-anonymity privacy measure and the k-metric anti-dimension

can be understood in the following way. Suppose that an adversary takes control of a set of

nodes S of the graph ( i.e. , S plays the role of attacker nodes), and the background knowledge

of such an adversary regarding a target node v is the metric representation of the node v with

respect to S. The (k, `)-anonymity privacy measure is then a privacy metric that naturally

evolves from the adversary’s background knowledge. Intuitively, if S (the attacker nodes of an

adversary) is a k-anti-resolving set then the adversary cannot uniquely re-identify other nodes in

the network (based on the metric representation) from these attacker nodes with a probability

higher than 1/k (based on uniform sampling of other nodes), and if the k-metric anti-dimension

of the graph is ` then the adversary must use at least ` attacker nodes to get the probability of

privacy violation down to 1/k.

The second part of the thesis formalizes three computational problems related to measur-

ing (k, `)-anonymity of graphs, presents algorithms and non-trivial computational complexity

results for these problems



CHAPTER 2

PRIVACY OF MULTI AGENT COMMUNCATION PROTOCOLS

Privately computable functions has been studied in the literature in the past based on

combinatorial characterization ( e.g. , see (16)), communication-complexity analysis ( e.g. ,

see (17)) or information-theoretic analysis ( e.g. , see (18)). Unfortunately, the results of such

investigations have showed that many interesting classes of functions either do not have a “per-

fect” privacy-preserving protocols or such protocols require impractically large communication

rounds. Thus, it behooves to formalize an appropriate notion of approximate privacy and study

its properties.

Recently, in (1) Feigenbaum, Jaggard and Schapira described a notion of approximate

privacy for protocols computing a function of two variables based on a geometric and combina-

torial interpretation of the protocol. We study its application to tiling functions and bisection

protocol designed based on Bsp.

1The contents of this chapter are taken from (2; 3)

2Reprinted from Theoretical Computer Science, Vol 457, M. Comi et al. ,On communication protocols
that compute almost privately, 45-58, 2012, with permission from Elsevier

3Algorithmic Game Theory: 4th International Symposium, SAGT 2011, Amalfi, Italy, October 17-19,
2011. Proceedings, On Communication Protocols That Compute Almost Privately, 2011, M. Comi et al.
(© Springer-Verlag Berlin Heidelberg 2011) With permission of Springer

8
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2.1 Basic Definitions for the Two-party Model

We have two parties, each one of them holding a private information represented by a k-bit

string that represents a value in {0, 1, . . . , 2k − 1}. In each communication round, one of the

parties alternately sends out a bit that is computed as a function of that party’s input and

communication history. The last message sent in a protocol P is assumed to contain the value

of the function, and therefore may require a larger number of bits. The final outcome of the

protocol is denoted by the function s.

Denoting the domain of inputs and outputs by Σin and Σout, respectively, any function

f : Σin × Σin 7→ Σout can be visualized as |Σin| × |Σin| matrix with entries from Σout in which

the first dimension represents the possible values of player 1, ordered by some permutation Π1,

while the second dimension represents the possible values of player 2, ordered by some permu-

tation Π2; each entry contains the value of f associated with a particular set of inputs from the

2 players. This matrix will be denoted by AΠ1,Π2(f).(Figure 2)

Definition 1 (1) Let A = AΠ1,Π2(f) be the matrix as described above.

Region: a region of A is any subset of entries in A (not necessarily a submatrix).

Partition: a partition of A is a collection of disjoint regions in A whose union equals to A.

Monochromaticity: a region R of A in called monochromatic if all entries in R are of the

same value. A monochromatic partition of A is a partition all of whose regions are

monochromatic.
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Figure 2. Function Matrix

Rectangle: a rectangle in A is a submatrix of A.

Tiling: a tiling of A is a partition of A into rectangles.

Refinements: a tiling T1 of A is said to be a refinement of another tiling T2 of A if every

rectangle in T1 is contained in some rectangle in T2.

Perfect privacy: P achieves perfect privacy if, for every two sets of inputs (x1, x2) and

(x′1, x
′
2) such that f(x1, x2) = f(x′1, x

′
2), it holds that s(x1, x2) = s(x′1, x

′
2).
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Ideal monochromatic partitions: a monochromatic region of A is said to be a maximal

monochromatic region if no monochromatic region in A properly contains it. The ideal

monochromatic partition of A is made up of the maximal monochromatic regions.

Perfectly privacy-preserving protocol: a communication protocol P for f is perfectly privacy-

preserving if the monochromatic tiling induced by P is the ideal monochromatic partition

of A(f).

Worst case Par of a protocol P : let RP (x1, x2) be the monochromatic rectangle induced by

P for (x1, x2) ∈ {0, 1}k × {0, 1}k and RI(x1, x2) be the monochromatic region containing

A(x1, y1) in the ideal monochromatic partition of A. Then P has a worst-case privacy-

approximation-ratio (Par) of αworst if αworst = max(x1,x2)

[
|RI(x1,x2) |
|RP (x1,x2)|

]
.

Average case Par of P : let D be a probability distribution over the space of inputs. The

average case privacy-approximation-ratio (Par) of a communication protocol P under

distribution D for function f is αD = ED

[
|RI(x1,x2)|
|RP (x1,x2)|

]
.

Worst case Par for a function: the worst case Par for a function f is the minimum, over

all protocols P for f , of the worst case Par of P .

2.2 Dissection Protocols and Tiling Functions

Often in communication complexity settings the input of each party has a natural ordering,

e.g. , the set of party i’s inputs {0, 1}k can represent the numbers 0, . . . , 2k − 1 (as is the

case when computing the maximum/minimum of two inputs, in the millionaires problem, in

second-price auctions, and more). When designing protocols for such environments, a natural
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Figure 3. Privacy Approximation Ratio

restriction is to only the allow protocol to ask each party questions of the form “Is your input

between a and b (in the natural order over possible inputs)?”, where a, b ∈ {0, 1}k. The bisection

protocol for the millionaires problem (1) and the bisection auction (19; 20) both fall within this

category of protocols. We call this type of protocols as “dissection protocols”.(Figure 4)

We now formally present dissection protocols. Given a permutation Π of {0, 1}k, we let ≺Π

denote the order over {0, 1}k that Π induces, i.e. , ∀ a, b ∈ {0, 1}k, a ≺Π b provided b comes

after a in Π. We call a subset I ⊆ {0, 1}k contiguous with respect to Π if for every a, b ∈ I and

for every c ∈ {0, 1}k it holds that a ≺Π c ≺Π b =⇒ c ∈ I.

Definition 2 (dissection protocol) Given a function f : {0, 1}k × {0, 1}k 7→ {0, 1}t and

permutations Π1 and Π2 over {0, 1}k, we call a communication protocol for f a dissection
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protocol with respect to Π1,Π2 if, at each communication step, the maintained subset of inputs

Si of each party i is contiguous with respect to Πi.

Observe that every protocol can be regarded as a dissection protocol with respect to some

permutations over inputs by simply reverse-engineering to construct the permutation so that

they be consistent with the way the protocol updates the maintained sets of inputs. However,

not every protocol is a dissection protocol with respect to specific permutations. Consider,

for example, the case that both Π1 and Π2 are the permutation over {0, 1}k that orders the

elements from lowest to highest binary values. Observe that a protocol that is a dissection

protocol with respect to these permutations cannot ask questions of the form “Is your input

odd or even?”, for these questions partition the space of inputs into non-contiguous subsets.

We next introduce the concept of tiling functions. Recall that a tiling is defined to be a

partition of a matrix into monochromatic rectangles.

Definition 3 (tiling function) A function f : {0, 1}k × {0, 1}k 7→ {0, 1}t is called a tiling

function with respect to two permutations Π1,Π2 of {0, 1}k (or, simply a tiling function if Π1

and Π2 are clear from the context) if the monochromatic regions in AΠ1,Π2(f) form a tiling.

For example, for a prime p, the following function is a tiling function

f(x0, x1, . . . , xk−1, y0, y1, . . . , yk−1) ≡
k−1∑
i=0

(xi + yi) (mod p)

Here, Π1 orders the inputs (x0, x1, . . . , xk−1) in increasing order on the value
∑k−1

i=0 xi (mod p);

Π2 is defined analogously.(Figure 5)
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Figure 4. Bisection and Disection Protocols

Finally, a special case of interest of the dissection protocol is the bisection protocol that has

been investigated in the literature in various contexts.

Definition 4 (bisection protocol) A dissection protocol with respect to the permutations

Π1,Π2 is a bisection protocol for a tiling function with respect to the same permutations Π1

and Π2.

2.2.1 Some Remarks on Tiling Functions and Bisection/Dissection Protocols

Obviously it is possible to have functions f that are tiling with respect to two permuta-

tions Π1,Π2 and with respect to another two permutations Π′1,Π
′
2 where Πi 6= Π′i and the

number of monochromatic regions in the two cases differ. As a result, approximate privacy

measures may differ for the two sets of permutations. For example, consider the tiling function
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All maximal monochromatic
regions are rectangles

Figure 5. Tiling Function

as shown in Figure 6. With respect to the permutations Π1,Π2 in Figure 6(a) the function

is not privately computable. But, with respect to the permutations Π′1,Π
′
2 in Figure 6(b)

the function is privately computable. Thus, the tiling function in Definition 3 specifies the

two permutations Π1,Π2 with respect to which the tiles are given so that the quantification of

privacy is unambiguous; note that these permutations are not necessarily the same

that the two players use in a dissection protocol. However, our results for upper

bounds of worst-case and average privacy values are stronger: the upper bounds hold for

any two permutations that produce a tiling of the function.
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Our definition of bisection protocol is more general than the one in (1)1 since, for example,

we do not require the protocol to divide the maintained input space into two equal halves and

the permutations of the two players for a dissection could be different.

2.2.2 Boolean Tiling Functions

a9 a2 a2 a3

a8 a1 a5 a3

a7 a1 a4 a4

a6 a10 a11 a12

a2 a9 a2 a3

a1 a8 a5 a3

a1 a7 a4 a4

a10 a6 a11 a12

0

0 0

1

1 1

2

2 2

3

3 3

1 0 2 3

Π1

Π2

Π′1

Π′2

(a) (b)

Figure 6. A function that is a tiling function with respect

to two permutation pairs Π1,Π2 and Π′1,Π
′
2.

We show that Boolean tiling

functions are nicely-behaving in

terms of privacy preservation.

Lemma 5 Every Boolean tiling

function can be computed in a per-

fectly privacy-preserving manner.

Proof. Consider the specific tiling

in Figure 7, that contains rectan-

gles A, B and C (the rest of the

tiling is not specified in the figure).

We observe that this tiling cannot

be a tiling of the input space of a

Boolean function. This is because A, B and C are maximal monochromatic regions and thus

1When both players have the same permutation, such protocols are sometimes referred to as ε-
approximate bisection (ε > 1) provided each protocol step divides the maintained input space into two
halves with each half being between 1

ε and 1− 1
ε fraction of the original.
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cannot border rectangles that are of the same “color” ( i.e. , for which f outputs the same out-

come). However, because f only has two possible outcomes (0 and 1), and every two rectangles

in the set {A,B,C} border one another, we have that the existence of a tiling as in Figure 7

is impossible for a Boolean function.

A

B

C

Figure 7. Illustration of the

argument in the proof of

Lemma 5.

This line of argument applies more generally, as we now show.

Two rectangles in a tiling can be neighbors in one of two ways:

either on the x axis (one is “to the left” of the other) or on the

y axis (one is “above” the other). The same argument as above

shows that every two rectangles that neighbor on the x axis must

have the same upper and lower line-boundaries, whereas every

two rectangles that neighbor on the y axis must have the same

left and right line-boundaries. This implies that the tiling of every

Boolean tiling must be in the form of a checkers board, and thus

perfectly privately computable. q

Remark 1 The claim of the above lemma does not hold if the

range of the function has at least three values.

2.3 Average and Worst Case Par for Tiling Functions

In this section, we show that any tiling function admits a protocol that has a small con-

stant average case privacy approximation ratio. Moreover, we show that this result cannot be

extended to the case of worst-case privacy approximation ratios.
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2.3.1 Constant Average-case Par for Tiling Functions

Let f : {0, 1}k × {0, 1}k 7→ {0, 1}t be a given tiling function with permutations Π1,Π2, and

let r denote the number of monochromatic rectangles in AΠ1,Π2(f) (0 < r ≤ 2k). We will denote

the uniform distribution over all input pairs by Du. A c-approximate uniform distribution D∼ c
u

is a distribution in which the probabilities of two input pairs are close as a function of c ≥ 0,

namely max(x,y), (x′,y′)∈{0,1}k×{0,1}k |D∼ c
u (x,y)− D∼ c

u (x′,y′) | ≤ c 2−2k.

Theorem 6 The following results hold:

(a) For any tiling function f . there is a bisection protocol P using at most 8r communi-

cation steps such that

• αD∼ c
u
≤ 4 + 4c, and

• P can be computed in O
(
k4k
)

time.

(b) For 0 ≤ c < 9
8 , there exists a tiling function f such that for every dissection protocol

αD∼ c
u
≥ 11

9 + 2
81c.

Proof. For i = 1, 2, . . . , r, let the ith monochromatic rectangle RI(x,y) in AΠ1,Π2(f) contain

yi × 22k elements and suppose that a communication protocol partitions this rectangle into

ti ≥ 1 rectangles containing z1, . . . , zti elements, respectively. Then the contribution of all cells

in RI to αDu is
∑ti

j=1

(
yi2

2k

zj
× zj

22k

)
= tiyi. Thus αDu =

∑r
i=1 tiyi. Similarly, one can see that

αD∼ c
u
≤
∑r

i=1

∑ti
j=1

(
yi2

2k

zj
× (1+c) zj

22k

)
=
∑r

i=1(1 + c) tiyi.
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1A binary space partition (Bsp) for a collection of disjoint rectangles in the two-dimensional

plane is defined as follows. The plane is divided into two parts by cutting rectangles with a

line if necessary. Each fragment of the rectangle belongs solely to one of the parts it falls in.

The two resulting parts of the plane are divided recursively in a similar manner; the process

continues until at most one fragment of the original rectangles remains in any part of the plane.

This division process can be naturally represented as a binary tree (Bsp-tree) where a node

represents a part of the plane and stores the cut that splits the plane into two parts that its two

children represent; each leaf of the Bsp-tree represents the final partitioning of the plane and

stores at most one fragment of an input rectangle. The size of a Bsp is the number of leaves in

the Bsp-tree. The following result was proved in (22).

Theorem 7 (22)1 Assume that we have a set S of r disjoint axis-parallel rectangles in the

plane. Then, a Bsp of S can be computed in O(r log r) time such that every rectangle in S is

partitioned into at most 4 rectangles.

(a) Notice that any Bsp defines a bisection protocol. Thus, using maxi{ti} ≤ 4 we get

αD∼ c
u
≤
∑r

i=1 4 (1 + c) yi = 4 (1 + c). Also, each communication step either partitions a sub-

rectangle of the monochromatic rectangles or partitions the sub-rectangles, thus we need at

most 8r steps.

1As defined in (21)

1Note that we cannot use the slightly stronger bounds in (21) since that applies to the average Bsp
size.



20

2k

2k

b
(

1
3

)
2kc

b
(

2
3

)
2kc

Figure 8. Example for αD∼ c
u
≥ 11

9 + 2
9c. The crosshatched area is covered by unit area squares.

(b) Consider the function f whose ideal monochromatic rectangles are shown in Figure 8.

Each of the four non-square rectangles contain about
(

2
9

)
22k elements and the remaining squares

contain about
(

1
9

)
22k elements. We assign a probability of about

(
1 + c

9

)
/22k to every point

in the four non-square rectangles and assign a probability of
(
1− 8c

9

)
/22k to the remaining

rectangles. The very first step of any dissection protocol must partition at least one border

rectangle, giving

αD∼ c
u
≥

(
2×

2 + 2c
9

9

)
+

7− 2c
9

9
=

11

9
+

2

81
c q
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2.3.2 Large Worst-case Par for Tiling Functions

Can we extend the results of the previous section to show that for every tiling function

there exists a dissection protocol that achieves a good Par even in the worst case? We now

show that the answer to this question is negative. We present a tiling function for which every

dissection protocol has exponential worst-case Par.

Theorem 8 There exists a tiling function f : {0, 1}k ×{0, 1}k 7→ {0, 1}t such that for any two

permutations Π1,Π2 of {0, 1}k, every protocol P for f that is a dissection protocol with respect

to Π1,Π2 has αworst = Ω
(
2k/2

)
.

Proof. Recall the example in Figure 8 that showed that there exist functions that cannot be

computed in a privacy preserving manner. Our construction of the function f in the statement

of the theorem is based on the function in Figure 8. We consider the specific permutations

Π1,Π2 over {0, 1}k that order the elements in {0, 1}k by binary value (from 0 to 2k − 1). We

now use the construction in Figure 8 “recursively” to create a tiling of the input space. We

first embed 2k−1 − 1 instances of the construction in Figure 8 recursively within one another,

as described in Figure 9(a), leaving a 2 × 2 square at the center. We then partition each of

the outermost rectangles in Figure 9(a) into two “nearly” equal-sized rectangles as described

in Figure 9(b).

Consider the function f such that the monochromatic rectangles of Af (Π1,Π2) are the

tilings in Figure 9(b) (f outputs a different outcome for each (minimal) rectangle in the figure).

Clearly, f is a tiling function. We now first show that any protocol P for f that is a dissection

protocol with respect to Π1,Π2 has an Ω
(
2k−1

)
worst-case Par.
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Figure 9. Illustrations of the arguments in the proof of Theorem 8. The dotted lines in (b)
are shown for visual clarities only.

Consider a protocol P for f that is a dissection protocol with respect to Π1,Π2. Consider

the first (meaningful) bit transmitted in the execution of P . Suppose that this bit is transmitted

by party 1 (the case that the bit is transmitted by party 2 is analogous). This bit effectively

partitions the input space into two nonempty rectangles, where one rectangle (the “upper

rectangle”) are all inputs of the form {0, . . . ,Γ} × {0, . . . , 2k} for some 0 ≤ Γ < 2k. Consider

the rectangles A and B in Figure 9(b). We have the following cases.

Case I: the first bit does not partition rectangle A or rectangle B. This case can be

divided into subcases: either the first bit dissects 1’s input space just between A and B,

or it dissects 1’s input space just below B.
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Case I(a): the first bit dissects 1’s input space just between A and B. Observe

that if 2’s input is 2k − 1 then this results in the partitioning of a rectangle of size

2k−1 (rectangle C) into two rectangles, one of which is of size exactly 2. Hence,

αworst ≥ 2k−2.

Case I(b): the first bit dissects 1’s input space just below B. Consider the case

that 2’s input is 2k−1. Observe that in this case rectangle D is also partitioned

similarly to subcase I(a), and thus αworst ≥ 2k−1.

Case II: either rectangle A or rectangle B is partitioned. We focus on the case that

rectangle A is partitioned (the case that rectangle B is partitioned is analogous). A is

partitioned into two contiguous rectangles and so there must exist some 0 < Γ < 2k−1−1

such that all of 1’s inputs below (and equal to) Γ are separated from all of 1’s inputs that

lie above Γ.

Case II(a): 0 < Γ ≤ 2k−1 − 2k/2. Observe that for every such value Γ there exists a

vertical rectangle of width 1 (that is, an input of party 2) and of size (length)

2 × (|A| − Γ) that is partitioned into two rectangles, one of which is of size exactly

1 (the greater the value Γ the more to the right the partitioned rectangle is). Since

|A| − Γ ≥ 2
k
2 − 1 we have αworst = Ω

(
2k/2

)
.

Case II(b): 2k−1 − 2
k
2 < Γ < 2k−1 − 1. Observe that, for every such value of Γ, A (which

is of size 2k−1) is partitioned into two rectangles, of which one is of size at most 2k/2.

Thus, in this case too αworst = Ω
(
2k/2

)
.
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The above argument shows that for Π1,Π2 the statement of the theorem holds. To show that

the statement of the theorem holds for every tiling-inducing permutations we observe that all

tiling-inducing permutations for f induce (roughly) the same tiling. In this case, the first

meaningful bit transmitted by party 1 partitions the input space into two nonempty regions,

where one region consists of all inputs from ∆×{0, . . . , 2k} for some ∅ ⊂ ∆ ⊂ {0, 1, 2 . . . , 2k−1}.

A similar analysis can now be carried out by considering the intersection of this region with

rectangles A and B. q

2.4 Extensions of the Basic Two-player Setup

In this section, we briefly discuss two extensions to the basic setup of two-party communi-

cation model described before.

2.4.1 Non-tiling Functions

A natural extension of the classes of functions to be computed involves relaxing the con-

straint of the tiling functions, namely that each monochromatic region must be a rectangle.

Definition 9 (∆∆∆-approximate tiling function) A function f : {0, 1}k×{0, 1}k 7→ {0, 1}t is

a called a ∆-approximate tiling function provided there exists two permutations Π1,Π2 of {0, 1}k

such that each monochromatic region in AΠ1,Π2(f) is an union of at most ∆ disjoint

rectangle.

Proposition 1 For any ∆-approximate tiling function f with r monochromatic regions, there

is a bisection protocol P using at most 8r∆ communication steps such that

• αD∼ c
u
≤ (4 + 4c)∆, and
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• P can be computed in O
(
k4k
)

time.

Proof. We use the algorithm of Theorem 6 on the set of at most r∆ rectangles obtained by

partitioning each monochromatic region into rectangles. Since each rectangle is partitioned at

most 4 times, each monochromatic region of f will be partitioned at most 4∆ times. q

2.4.2 Multi-party Computation

Another natural extension of the basic two-player setup is to consider the case of d > 2

players computing a d-argument function f : {0, 1}k × {0, 1}k × · · · × {0, 1}k︸ ︷︷ ︸
d times

7→ {0, 1}t. We

need to adjust some definitions in the following natural manner:

• Players are sequentially ordered 1 to d.

• The tiling function has permutation Πi for the ith argument of f (or, equivalently for

player i) for 1 ≤ i ≤ d. The input space is now the d-dimensional space {0, 1}k×{0, 1}k×

· · · × {0, 1}k and each tile is a d-dimensional hyper-rectangles (Cartesian product of d

intervals).

• A dissection protocol is generalized to a “round robin” dissection protocol in the following

manner. In one “mega” round of communications, players communicate in the order

player 1, player 2, . . . , player d, and the mega round is repeated if necessary. Any

communication made by any player is available to all the remaining players. Thus, each

communication of the dissection protocol partitions a d-dimensional space into two d-

dimensional space by an appropriate (d− 1)-dimensional hyperplane.
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• All the definitions of Sections 2.1 and 2.2 can now be easily generalized in a similar

manner.

How good is the average Par for d-dimensional tiling functions? For general d, it is non-trivial

to compute precise bounds because each player i has her/his own permutation Πi of the input,

the tiles are boxes of “full” dimension and separating hyperplanes must be of dimension exactly

d− 1. Nonetheless, we show that the average Par is very high for dissection protocols even for

3 players and uniform distribution, thereby suggesting that this quantification of privacy may

not provide good bounds for three or more players.

Figure 10. (a) Illustration of the 3-dimensional tiling function in Lemma 10 for k = 3. The
non-trivial hyper-rectangles for each dimension are shown colored by light gray, dark gray and

black; the trivial hyper-rectangles cover the region colored magenta. (b) Hyper-rectangles
corresponding to one protocol step for player 1.
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Lemma 10 (large average Par for dissection protocols with 3 players) There are tiling

functions f : {0, 1}k × {0, 1}k × {0, 1}k 7→{0, 1}O(k) such that for every dissection protocol αDu =

Ω
(
2k
)
.

Proof. The tiling function for our claim is adopted from an example of the paper by Paterson

and Yao (23; 24) with appropriate modifications1. For convenience, we refer to the arguments

of function f as decimal equivalent of the corresponding binary numbers. The three arguments

of f are referred to as dimension 1, 2 and 3, respectively. The area of a hyper-rectangle

R = [a, a′]× [b, b′]× [c, c′] ∈ {0, 1, . . . , 2k−1}3 is Area(R) = (a′−a+1)×(b′−b+1)×(c′−c+1).

We will show the tiling for the function f ; see Figure 10 for an illustration of our construction

for k = 3.

For each dimension, we have a set of Θ
(
2k
)

hyper-rectangles; we refer to these hyper-

rectangles as non-trivial hyper-rectangles for this dimension. For dimension 1, these hyper-

rectangles are of the form [0, 2k− 1]× [4x, 4x]× [4y, 4y] for every 0 ≤ x, y < 2k−1
4 . Similarly, for

dimensions 2 and 3, the non-trivial hyper-rectangles are of the form [4x+ 1, 4x+ 1]× [0, 2k −

1] × [4y + 1, 4y + 1] and [4x + 2, 4x + 2] × [4y + 2, 4y + 2] × [0, 2k − 1], respectively. It is easy

to see that the non-trivial hyper-rectangles are mutually disjoint, each of them is of area 2k

and the sum of their areas is Ω(23k). The remaining “trivial” hyper-rectangles are each of

unit area such that they together cover the remaining input space. It now also follows that the

number of monochromatic regions is Θ
(
23k
)
. Let Si be the set of all non-trivial hyper-rectangles

1According to (23; 24), the example came from a private communication with W. Thurston.
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corresponding to the ith dimension and S = S1 ∪ S2 ∪ S3. Suppose that a dissection protocol

partitions, for i = 1, 2, . . . , |S|, the jth non-trivial hyper-rectangle Rj into tj hyper-rectangles;

then the same argument as in Theorem 6 leads us to αDu =
∑|S|

j=1
Area(Rj)

23k yj =
∑|S|
j=1 yj

22k . Thus,

it suffices to show that
∑|S|

j=1 yj = Ω
(
23k
)
.

Consider any player, say player 1 corresponding to the first dimension. For each communi-

cation step of this player, the maintained set of inputs is a subset of the maintained set of inputs

in the previous step. Thus, each meaningful communication step of player 1 geometrically cor-

responds to a set of 3-dimensional hyper-rectangles as illustrated in Figure 10(b). Notice that

each of these hyper-rectangles produce Ω
(
22k
)

new fragments of the primary hyper-rectangles

corresponding to the first dimension. To finish the proof, consider the line y = z = 4 and place

points on this line starting from x = 0 consecutively at a distance of 4 apart. It can be easily

seen that the final set of hyper-rectangles produced by player 1 cannot contain two such points.

Thus, the number of hyper-rectangles must be Ω
(
2k
)

and consequently
∑|S|

j=1 yj = Ω
(
23k
)
. q

Remark 2 A generalized version of the example in d dimension ( e.g. , see (25)) can be used to

provide a slightly improved lower bound on αDu for bisection protocols more than three players;

the bound asymptotically approaches Ω
(
22k
)

for large d.

2.5 Analysis of the Bisection Protocol for Two Boolean Functions

In Section 2.2.2 we showed that any Boolean function can be computed with perfect privacy

by a dissection protocol. In this section, we analyze the bisection protocol (19; 20), a special

case of the general dissection protocol, for two Boolean functions that appear in the literature.
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In bisection protocol, each party does a binary search on the ordering of its inputs until the

result is revealed. As before, Du denotes the uniform distribution. In (1) the authors provided

calculated bounds on αworst and αDu for the bisection protocol on a few functions. In this section,

we show similar calculations for two Boolean functions. Letting x = (x1, x2, . . . , xn) ∈ {0, 1}k

and y = (y1, y2, . . . , yn) ∈ {0, 1}k, the functions that we consider are the following:

AND-OR function: f∧,∨(x,y) =
∧n
i=1 (xi ∨ yi). For example, each bit may indicate the

availability of a specific resource and a 1 output of the function ensures that every resource

is available to at least one of the parties.

Equality function: f=(x,y) =


1 if ∀ i : xi = yi

0 otherwise

.

A summary of our bounds are as follows.

Function αDu αworst

f∧,∨ ≥
(

3
2

)2k
f= = 2k − 2 + 21−k = 22k−1 − 2k−1

We will use the formula for αDu that we derived in the proof of Theorem 6: letting r denote

the number of monochromatic regions in an ideal partition of the function if, for i = 1, 2, . . . , r,

the ith monochromatic region contain yi×22k elements and the bisection protocol partitions this

region into ti ≥ 1 rectangles containing z1, . . . , zti elements, respectively, then αDu =
∑r

i=1 tiyi.

In the sequel, by “contribution of a rectangle (of the bisection protocol) to the (average Par)”

we mean the size of the ideal monochromatic region that the rectangle is a part.
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2.5.1 AND-OR Function

Theorem 11 αDu ≥ (3/2)2k.

Proof. We begin by showing the geometry of the tilings for small values of k which easily

generalizes to larger k. The ideal tiling for f∧,∨ is shown in Figure 11(a) for k = 3 with the

value of the function for each input pair. The sizes of the ideal monochromatic partition are

shown in Figure 11(b) for k = 1, 2, 3, 4. The contributions to the average Par of various inputs

after applying the bisection protocol are illustrated in Figure 12 for k = 1, 2, 3, 4. We observe

the following:

• The tiles colored light gray for the case when k = 4 are referred to as the “background

tiles”. For k = 1, 2, 3, 4 each such tile contributes 3, 9, 27 and 81, respectively, to the

average Par. In general, this contribution is given by 3k and all these tiles have size 1.

• The contributions of the tiles in the upper-left region of the matrix are given by the sum

of the first 2k − 1 natural numbers; thus each of these tiles contribute 22k−1 − 2k−1.

• For any k, observe that the matrix can be decomposed into 4 quadrants; the following

observations can be repeated recursively on each resulting quadrant, except for the first

quadrant:

– The first quadrant is a monochromatic region that contributes 22k−1 − 2k−1 to the

average Par.

– The fourth quadrant has the same structure as the original matrix, but the contri-

butions for the non-background tiles will be related to the case of a matrix with j
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bits instead of k, where the size of the quadrant is 2j . For example, notice that the

fourth quadrant of a matrix with k = 4 is the same as a whole matrix with k = 3,

except for the “background tiles”, that always contribute for 3k, with the original

value of k.

– The second and third quadrants are similar to the fourth quadrant case, but in this

case the values in the upper-left portion of the quadrants will remain the same as

the original matrix, instead of going down as with the fourth quadrant case.

Figure 11. (a) Ideal monochromatic partition for f∧,∨ when k = 3. (b) Sizes of ideal
monochromatic partition for f∧,∨.
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Figure 12. Contribution to Par for k = 0, 1, 2, 3, 4.

Based on these observations, we can obtain a recurrence for the total contribution to the

average Par of all the tiles in a generic matrix. We need the following parameters:

• The number of bits in the original matrix, that we denote by k;

• The number of bits corresponding to the size of the matrix, or submatrix being considered,

that we denote by i;

• The number of bits to be used in the calculation of the contribution of the upper-left

portion of the matrix, or submatrix, being considered; we denote this by j.

The recurrence that computes the total contribution to the PAR of all the tiles in the matrix

is:

g (i, j, k) =


3k, if i = 0

22j−1 − 2j−1 + 2g (i− 1, j, k) + g (i− 1, i− 1, k) , otherwise
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The values of i and j are initially set to the value of k. The interpretation of each term in the

above recurrence is as follows:

• 3k is the contribution of each “background tile”;

• 22j−1 − 2j−1 is the contribution of the first quadrant;

• g (i− 1, j, k) is the contribution of each one of the second and third quadrants and

• g (i− 1, i− 1, k) is the contribution of the fourth quadrant.

Remember that, for a given k, the recurrence equation is initialized with i = j = k. Thus, we

have:

Case: k = 0: g (k, k, k) = 3k = 32k.

Case: k > 0: g(k, k, k) = g(k−1, k−1, k)+2g(k−1, k, k)+ t(k). The second parameter to the

function indicates how to generate the t(k) terms; the value of such terms is proportional

to that parameter. Thus, for a ≥ b, g(k, a, k) ≥ g(k, b, k). For our lower bound, we can

neglect the terms t(k). Thus, we obtain:

g(k, k, k) ≥ 3g(k − 1, k − 1, k) ≥ 3g(k − 2, k − 2, k) ≥ · · · · · · ≥ 3g(1, 1, k) ≥ 3g(0, 0, k)

For each step, the value of the first parameter decreased exactly by one unit, so after

k iterations the value of the first parameter will be zero. Hence we have g(k, k, k) ≥

3kg(0, 0, k). Since g(0, 0, k) = 3k we finally obtain g(k, k, k) ≥ 3k × 3k = 32k.

Thus, αDu = g(k, k, k)/22k ≥ (3/2)2k. q
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2.5.2 Equality function

Theorem 12 αDu = 2k − 2 + 21−k and αworst = 22k−1 − 2k−1.

Proof. An illustration of the ideal partition into monochromatic regions for equality function

is shown in Figure 13 (a). After running the bisection protocol, the induced tiling is (for

k = 3) is shown in Figure 13 (b). Excluding the diagonal, we have 2 tiles of size 16, 4 tiles of

size 4, and 8 tiles of size 1. In general, it is easy to observe that, for each 0 ≤ i < k, we have

exactly 2k−i tiles of size 22i.

Figure 13. (a) Ideal tiling for equality function. (b) The induced tiling by the bisection
protocol (shown for k = 3). (c) Contribution of each rectangle in protocol-induced tiling

where ∗ ≡ 22k−1 − 2k−1∗ ≡ 22k−1 − 2k−1∗ ≡ 22k−1 − 2k−1. The numbers in the figure denote the size of each tile.

The following accounting scheme can be used to simplify calculation. For uniform distribu-

tion Du, αDu is the sum of the ratio |R
I(i,j)|

|RP (i,j)| over each element (i, j) in the matrix divided by the

number of total elements 22k in the matrix, where RI(i, j) and RP (i, j) is the size of the ideal
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and protocol-induced tiling that contains the cell (i, j). Consider a rectangle A of size m in the

protocol-induced tiling and suppose that A is contained in a monochromatic region of the ideal

partition of size m′. Then, the sum of contributions of the elements of A is
∑m

i=1m
′/m = m′.

Thus, the total contribution of the rectangle A is simply the size of region of the ideal partition

containing it.

Figure 13 (c) illustrates the contribution of each rectangle in the protocol-induced tiling to

average Par. We can calculate the total contribution to the average Par of all the tiles in the

matrix, except the diagonal, by multiplying 22k−1 − 2k−1 by the number of tiles. The number

of tiles is given by:
∑k−1

i=0 2k−i = 2k+1 − 2. The total contribution of those tiles is (2k+1 − 2)×(
22k−1 − 2k−1

)
= 23k − 22k+1 + 2k. The contribution of the diagonal is 1 + 1 + · · · · · ·+ 1︸ ︷︷ ︸

2k times

= 2k.

Since the average objective PAR αDu is the sum of the total contributions divided by the number

of cells in the matrix, we have

αDu =
23k − 22k+1 + 2k + 2k

22k
=

23k − 22k+1 + 2k+1

22k
= 2k − 2 + 21−k

It can be seen from the ideal and protocol tilings that the worst case for Par is the one in which

the ideal tile size is 22k−1− 2k−1, and the protocol tile size is 1. Thus αworst = 22k−1− 2k−1. q



CHAPTER 3

SOCIAL NETWORKS PRIVACY

Online Social Networks have become very popular in the recent years. Such networks provide

a platform for users to publicize their private informations. It is obviously desirable to know

how secure a given social network is against active attacks.

There is a rich literature on theoretical investigations of privacy measures and privacy

preserving computational models in several other application areas such as multi-party commu-

nications, distributed computing and game-theoretic settings ( e.g. , see (1; 2; 17; 18; 26)). The

differential privacy model, introduced by Dwork (4) in the context of privacy preservation in

statistical databases against malicious database queries, works by computing the correct answer

to a query and adding a noise drawn from a specific distribution, and is quite different from

the anonymization approach studied in this chapter.

However, none of these settings apply directly to our application scenario of active attack

model for social networks. This necessitates the study of computational complexity issues for

computing (k, `)-anonymity. Currently known results only include some heuristic algorithms

with no provable guarantee on performances such as in (14), or algorithms for very special

cases. In fact, it is not even known if any version of the related computational problems is

NP-hard. To this effect, we formalize three computational problems related to measuring the

0The contents of this chapter are taken from arXiv:1510.08779 [cs.CC]

36
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(k, `)-anonymity of graphs and present non-trivial computational complexity results for these

problems.

3.1 Basic Terminologies, Notations and Problem Definitions

In this section, we first describe the terminologies and notations required to describe our

computational problems, and subsequently describe several versions of the problems we con-

sider.

3.1.1 Basic Terminologies and Notations

Figure 14. An example to illustrate the notations in Section 3.1.1.

Let G = (V,E) be our undirected unweighted input graph over n nodes v1, v2, . . . , vn. We

use distvi,vj to denote the distance (number of edges in a shortest path) between nodes vi and

vj . For illustrating various notations, we use the example in Figure 14.

I dvi = (distvi,v1 ,distvi,v2 , . . . ,distvi,vn). For example, dv2 = (1, 0, 2, 1, 2).
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I diam(G) = max
vi,vj∈V

{
distvi,vj

}
is the diameter (length of a longest shortest path) of the graph

G = (V,E). For example, diam(G) = 3.

I Nbr (v`) = { vj | {v`, vj} ∈ E } is the (open) neighborhood of node v` in G = (V,E). For

example, Nbr (v2) = {v1, v4}.

I For a subset of nodes V ′ ⊂ V and any vi ∈ V \V ′, dvi,−V ′ denotes the metric representation

of vi with respect to V ′, i.e. , the vector of |V ′| elements obtained from dvi by deleting

distvi,vj for every vj ∈ V \ V ′. For example, dv2,−{v1,v3} = (1, 2).

I DV ′′,−V ′ =
{

dvi,−V ′ | vi ∈ V ′′
}

for any V ′′ ⊆ V \ V ′. For example, if V ′′ = {v2, v4} then

DV ′′,−{v1,v3} =
{

(1, 2), (2, 1)
}

.

I Π = {V1, V2, . . . , Vk} is a partition of V ′ ⊆ V if and only if ∪kt=1Vt = V ′ and Vi ∩ Vj = ∅ for

i 6= j.

. Partition Π′ = {V ′1 , V ′2 , . . . , V ′` } is called a refinement1 of partition Π, denoted by Π′ ≺r Π,

provided ∪`t=1V
′
t ⊂ ∪kt=1Vt and Π′ can be obtained from Π in the following manner:

. For every node vi ∈
(
∪kt=1Vt

)
\
(
∪`t=1V

′
t

)
, remove vi from the set containing it in Π.

. Optionally, for every set V` in Π, replace V` by a partition of V`.

. Remove empty sets, if any.

For example, if Π =
{
{v1, v2} , {v3, v4, v5}

}
and Π′ =

{
{v1, v2} , {v3} , {v4}

}
then Π′ ≺r

Π.

1Our definition is slightly different from the standard definition of refinement since we have ∪`t=1V
′
t ⊂

∪kt=1Vt.
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I The equality relation over a set of vectors, all of same length, obviously defines an equivalence

relation. The following notations are used for such an equivalence relation over the set of

vectors DV \V ′,−V ′ for some ∅ ⊂ V ′ ⊂ V .

. The set of equivalence classes, which forms a partition ofDV \V ′,−V ′ , is denoted by Π=
V \V ′,−V ′ .

For example,

Π=
{v1,v2,v3},−{v4,v5} =

{{
(2, 3)

}
,
{

(1, 2)
}
,
{

(1, 1)
}}

.

. Abusing terminologies slightly, two nodes vi, vj ∈ V \V ′ will be said to belong to the same

equivalence class if dvi,−V ′ and dvj ,−V ′ belong to the same equivalence class in Π=
V \V ′,−V ′ ,

and thus Π=
V \V ′,−V ′ also defines a partition into equivalence classes of V \V ′. For example,

Π=
{v1,v2,v3},−{v4,v5} will also denote

{{
v1

}
,
{
v2

}
,
{
v3

}}
.

. The measure of the equivalence relation is defined as µ
(
DV \V ′,−V ′

) def
= min
Y∈Π=

V \V ′,−V ′

{
| Y |

}
.

Thus, if a set S is a k-anti-resolving set then DV \S,−S defines a partition into equivalence

classes whose measure is exactly k. For example, µ
(
D{v1,v2,v3},−{v4,v5}

)
= 1 and {v4, v5}

is a 1-anti-resolving set.

3.1.2 Problem Definitions

It is obviously desirable to know how secure a given social network is against active at-

tacks. This necessitates the study of computational complexity issues for computing (k, `)-

anonymity. To this effect, we formalize three computational problems related to measuring the

(k, `)-anonymity of graphs. For all the problem versions, let G = (V,E) be the (connected

undirected unweighted) input graph representing the social network under study.
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Problem 1 (metric anti-dimension or Adim)) Given G, find a subset of nodes V ′ that

maximizes µ
(
DV \V ′,−V ′

)
.

Notation related to Problem 1 kopt = max
∅⊂V ′⊂V

{
µ
(
DV \V ′,−V ′

)}
.

Problem 1 simply finds a k-anti-resolving set for the largest possible k. Intuitively, it sets an

absolute bound on the privacy violation probability of an adversary assuming that the adversary

can use any number of attacker nodes. In practice, however, the number of attacker nodes

employed by the adversary may be limited, which leads us to the second problem formulation

stated below.

Problem 2 (k≥-metric anti-dimension or Adim≥k) Given G and a positive integer k,

find a subset of nodes V ′ of minimum cardinality such that µ
(
DV \V ′,−V ′

)
≥ k, if such a

V ′ exists.

Notation and assumption related to Problem 2 L≥kopt =
∣∣∣V ≥kopt

∣∣∣ = min
{
|V ′|

∣∣∣ µ (DV \V ′,−V ′) ≥
k
}

for some ∅ ⊂ V ≥kopt ⊂ V . If µ
(
DV \V ′,−V ′

)
≥ k for no V ′ then we set L≥kopt =∞ and V ≥kopt = ∅.

Problem 2 finds a k-anti-resolving set for largest k while simultaneously minimizing the

number of attacker nodes.

The remaining third version of our problem formulation relates to a trade-off between privacy

violation probability and the corresponding minimum number of attacker nodes needed to

achieve such a violation. To understand this motivation, suppose that G has a k-metric anti-

dimension of `, a k′-metric anti-dimension of `′, k′ > k and `′ < `. Then, this provides

a trade-off between privacy and number of attacker nodes, namely we may allow a smaller
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privacy violation probability 1/k′ but the network can tolerate adversarial control of a fewer

number `′ of nodes or we may allow a larger privacy violation probability 1/k but the network

can tolerate adversarial control of a larger number ` of nodes. Such a trade-off may be crucial

for a network administrator in administering privacy of a network or for an individual in its

decision to join a network. Clearly, this necessitates solving a problem of the following type.

Problem 3 (k=-metric antidimension or Adim=k) Given G and a positive integer k, find

a subset of nodes V ′ of minimum cardinality such that µ
(
DV \V ′,−V ′

)
= k, if such a V ′ exists.

Notation and assumption related to Problem 3 L=k
opt =

∣∣V =k
opt

∣∣ = min
{
|V ′|

∣∣∣ µ (DV \V ′,−V ′) =

k
}

for some ∅ ⊂ V =k
opt ⊂ V . If µ

(
DV \V ′,−V ′

)
= k for no V ′ then we set L=k

opt =∞ and V =k
opt = ∅

3.1.3 Standard Algorithmic Complexity Concepts and Results

For the benefit of the reader, we summarize the following concepts and results from the

computational complexity theory domain. We assume that the reader is familiar with standard

O, Ω, o and ω notations used in asymptotic analysis of algorithms ( e.g. , see (27)).

An algorithm A for a minimization (resp., maximization) problem is said to have an ap-

proximation ratio of ε (or is simply an ε-approximation) (28) provided A runs in polynomial

time in the size of its input and produces a solution with an objective value no larger than ε

times (resp., no smaller than 1/ε times) the value of the optimum. DTIME
(
nlog logn

)
refers to

the class of problem that can be solved by a deterministic algorithm running in (nlog logn) time

when n is the size of the input instance; it is widely believed that NP 6⊂DTIME(nlog logn).

The minimum set-cover problem ( Sc) is a well-known combinatorial problem that is defined

as follows (27; 29). Our input is an universe U = {a1, a2, . . . , an} of n elements, and a collection
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of m sets S1, S2, . . . , Sm ⊆ U over this universe with ∪mj=1Sj = U . A valid solution of Sc is a

subset of indices I ⊆ {1, 2, . . . ,m} such that every element in U is “covered” by a set whose

index is in I, i.e. , ∀ aj ∈ U ∃ i ∈ I : aj ∈ Si. The objective of Sc is to minimize the

number |I| of selected sets. We use the notation opt Sc to denote the size (number of sets) in

an optimal solution of an instance of Sc. On the inapproximability side, Sc is NP-hard (29)

and, assuming NP 6⊆DTIME
(
nlog logn

)
, Sc does not admit a (1 − ε) lnn-approximation for

any constant 0 < ε < 1 (30). On the algorithmic side, Sc admits a (1 + lnn)-approximation

using a simple greedy algorithm (31) that can be easily implemented to run in O
(∑m

i=1 |Si|
)

time (27).

3.2 Our Results

In this section we provide precise statements of our results, leaving their proofs in Sec-

tions 3.3–3.5.

3.2.1 Polynomial Time Solvability of Adim and Adim≥k

Theorem 13

(a) Both Adim and Adim≥k can be solved in O
(
n4
)

time.

(b) Both Adim and Adim≥k can also be solved in O
(
n4 logn

k

)
time “with high probability”

( i.e. , with a probability of at least 1− n−c for some constant c > 0).

Remark 3 The randomized algorithm in Theorem 13(b) runs faster that the deterministic

algorithm in Theorem 13(a) provided k = ω(log n).
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3.2.2 Computational Complexity of Adim=k

3.2.2.1 The Case of Arbitrary k

Theorem 14

(a) Adim=k is NP-complete for any integer k in the range 1 ≤ k ≤ nε where 0 ≤ ε < 1
2 is any

arbitrary constant, even if the diameter of the input graph is 2.

(b) Assuming NP 6⊆ DTIME (nlog logn), there exists a universal constant δ > 0 such that

Adim=k does not admit a
(

1
δ lnn

)
-approximation for any integer k in the range 1 ≤ k ≤ nε

where 0 ≤ ε < 1
2 is any arbitrary constant, even if the diameter of the input graph is 2.

(c) If k = n − c for some constant c then L=k
opt = c if a solution exists and Adim=k can be

solved in polynomial time.

Remark 4

(a) For k = 1, the inapproximability ratio in Theorem 14(a) is asymptotically optimal up to a

constant factor because of the (1 + ln(n− 1))-approximation of Adim=1 in Theorem 15(a).

(b) The result in Theorem 14(b) provides a much stronger inapproximability result compared

to that in Theorem 14(a) at the expense of a slightly weaker complexity-theoretic assumption (

i.e. , NP 6⊆ DTIME (nlog logn) vs. P 6= NP).

3.2.2.2 The Case of k = 1

Note that even when k = 1 Adim=k is NP-hard and even hard to approximate within a

logarithmic factor due to Theorem 14. We show the following algorithmic results for Adim=k

when k = 1.
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Theorem 15

(a) Adim=1 admits a (1 + ln(n− 1) )-approximation in O
(
n3
)

time.

(b) If G has at least one node of degree 1 then L=1
opt = 1 and thus Adim=1 can be solved in

O
(
n3
)

time.

(c) If G does not contain a cycle of 4 edges then L=1
opt ≤ 2 and thus Adim=1 can be solved in

O
(
n3
)

time.

3.3 Proof of Theorem 13

(a) We first consider the claim for Adim≥k. We begin by proving some structural properties

of valid solutions for Adim≥k.

Proposition 1 Consider two subsets of nodes ∅ ⊂ V1 ⊂ V2 ⊂ V . Let vi, vj ∈ V2 be two nodes

such that they do not belong to the same equivalence class in Π=
V \V1,−V1

. Then vi and vj do not

belong to the same equivalence class in Π=
V \V2,−V2

also.

Proof. Since vi and vj are not in the same equivalence class in Π=
V \V1,−V1

, we have dvi,−V1 6=

dvj ,−V1 which in turn implies (since V1 ⊂ V2) dvi,−V2 6= dvj ,−V2 which implies vi and vj are not

in the same equivalence class in Π=
V \V2,−V2

. q

Corollary 16 Proposition 1 implies Π=
V \V2,−V2

≺r Π=
V \V1,−V1

.

Note that Π=
V \V2,−V2

≺r Π=
V \V1,−V1

in Corollary 16 does not necessarily imply that µ
(
DV \V2,−V2

)
≤

µ
(
DV \V1,−V1

)
. The following proposition gives some condition for this to happen.
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Proposition 2 Consider two subsets of nodes ∅ ⊂ V1 ⊂ V2 ⊂ V , and let S1, S2, . . . , S` ⊆ V \V1

be the only ` > 0 equivalence classes (subsets of nodes) in Π=
V \V1,−V1

such that |S1| = |S2| =

· · · = |S`| = µ
(
DV \V1,−V1

)
. Then,

. ∪`t=1St 6⊆ V2 \ V1 implies µ
(
DV \V2,−V2

)
≤ µ

(
DV \V1,−V1

)
, and

. if ∅ ⊂ V2∩Sj ⊂ Sj for some j ∈ {1, . . . , `} then µ
(
DV \V2,−V2

)
< µ

(
DV \V1,−V1

)
.

Proof. Since V2 ∩ Sj ⊂ Sj , there exists a node vp such that vp ∈ Sj and vp /∈ V2. Similarly,

since ∅ ⊂ V2 ∩ Sj , there exists a node vq such that vq ∈ Sj and vq ∈ V2. By Corollary 16,

Π=
V \V2,−V2

≺r Π=
V \V1,−V1

and thus the following implications hold:

• If ∪`t=1Vt 6⊆ V2\V1 then Π=
V \V2,−V2

contains an equivalence class (subset of nodes) Sj′ ⊆ Sj

such that vi ∈ Sj′ . This implies µ
(
DV \V2,−V2

)
≤
∣∣Sj′∣∣ ≤ |Sj | = µ

(
DV \V1,−V1

)
.

• If there exists a Sj such that ∅ ⊂ V2∩Sj ⊂ Sj then Π=
V \V2,−V2

contains an equivalence class

∅ ⊂ Sj′ ⊂ Sj with vp ∈ St′ . This implies µ
(
DV \V2,−V2

)
≤
∣∣Sj′∣∣ < |Sj | = µ

(
DV \V1,−V1

)
.

q

Based on the above structural properties, we design Algorithm I for Adim≥k as shown

below.

Algorithm I: O
(
n4
)

time deterministic algorithm for Adim≥k.

1. Compute di for all i = 1, 2, . . . , n in O
(
n3
)

time using Floyd-Warshall algorithm (27, p. 629)

2. L̂≥kopt ←∞ ; V̂ ≥kopt ← ∅

3. for each vi ∈ V do (∗ we guess vi to belong to V ≥kopt ∗)
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3.1 V ′ = {vi} ; done← FALSE

3.2 while
(

(V \ V ′ 6= ∅) AND (NOT done)
)
do

3.2.1 compute µ
(
DV \V ′,−V ′

)
3.2.2 if

( (
µ
(
DV \V ′,−V ′

)
≥ k

)
and

(
|V ′| < L̂≥kopt

) )
3.2.3 then L̂≥kopt ← |V ′| ; V̂ ≥kopt ← V ′ ; done← TRUE

3.2.4 else let V1, V2, . . . , V` be the only ` > 0 equivalence classes (subsets of nodes)

in Π=
V \V ′,−V ′ such that |V1| = |V2| = · · · = |V`| = µ

(
DV \V ′,−V ′

)
3.2.5 V ′ ← V ′ ∪

(
∪`t=1Vt

)
4. return L̂≥kopt and V̂ ≥kopt as our solution

Lemma 17 (Proof of correctness) Algorithm I returns an optimal solution for Adim≥k.

Proof. Assume that V ≥kopt 6= ∅ since otherwise obviously our returned solution is correct. Fix

any optimal solution (subset of nodes) V ≥kopt of measure µ
(
D
V \V ≥kopt ,−V

≥k
opt

)
≥ k and select any

arbitrary node v` ∈ V ≥kopt . Consider the iteration of the for loop in Step 3 when vi is equal to

v`. We now analyze the run of this particular iteration.

Let {v`} = V1 ⊂ V2 ⊂ · · · ⊂ Vκ be the κ subsets of nodes that were assigned to V ′ in

successive iterations of the while loop in Step 3.2. We have the following cases to consider.

Case 1: V ≥kopt = Vt for some t ∈ {1, 2, . . . , κ}. Then, our solution is a set V̂ ≥kopt such that

µ

(
D
V \V̂ ≥kopt ,−V̂

≥k
opt

)
≥ k and L̂≥kopt ≤ L≥kopt.

Case 2: V ≥kopt 6= Vt for any t ∈ {1, 2, . . . , κ}. Since V1 = {v`} ⊂ V ≥kopt and Vt 6= V ≥kopt for any

t ∈ {1, 2, . . . , κ}, only one of the following cases is possible:
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Case 2.1: there exists r ∈ {1, 2, . . . , κ− 1} such that Vr ⊂ V ≥kopt but Vr+1 6⊆ V ≥kopt .

Let Vr,1, Vr,2, . . . , Vr,p ⊆ V \Vr be all the p > 0 equivalence classes (subsets of nodes)

in Π=
V \Vr,−Vr such that |Vr,1| = |Vr,2| = · · · = |Vr,p| = µ

(
DV \Vr,−Vr

)
. Now we note

the following:

• By Step 3.2.5, Vr+1 = Vr ∪ Vr,1 ∪ Vr,2 ∪ · · · ∪ Vr,p.

• Thus, Vr ⊂ V ≥kopt and Vr+1 6⊆ V ≥kopt implies Vr,1 ∪ Vr,2 ∪ · · · ∪ Vr,p 6⊆ V ≥kopt , and

therefore there exists an index 1 ≤ s ≤ p such that Z = Vr,s \ V ≥kopt 6= ∅. Let

Z ′ = Vr,s \ Z (Z ′ could be empty). Then, for some ∅ ⊂ Z ′′ ⊆ Z, Z ′′ is an

equivalence class in Π=
V \(Vr∪Z′),−(Vr∪Z′) implying

µ
(
DV \(Vr∪Z′),−(Vr∪Z′)

)
≤
∣∣Z ′′∣∣ ≤ |Z| (3.1)

Since Vr ∪ Z ′ ⊆ V ≥kopt , we have

Π=
V \V ≥kopt ,−V

≥k
opt

≺r Π=
V \(Vr∪Z′),−(Vr∪Z′) (in Corollary 16, set V2 = V ≥kopt and V1 = Vr ∪ Z′)

⇒ k ≤ µ
(
D
V \V ≥kopt ,−V

≥k
opt

)
≤ µ

(
DV \(Vr∪Z′),−(Vr∪Z′)

)
≤ |Z|

≤ |Vr,s|

= µ
(
DV \Vr,−Vr

)
by (Equation 3.1)
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Thus, µ
(
DV \Vr,−Vr

)
≥ k and |Vr| <

∣∣∣V ≥kopt

∣∣∣ = L≥kopt, contradicting the optimality of

L≥kopt.

Case 2.2: Vκ ⊂ V ≥kopt . If done was set to TRUE at the last iteration of the while loop,

then µ
(
DV \Vκ,−Vκ

)
≥ k and |Vκ| <

∣∣∣V ≥kopt

∣∣∣ = L≥kopt, contradicting the optimality of

L≥kopt. Thus, done must have remained FALSE after the last iteration of the while

loop, which implies µ
(
DV \Vκ,−Vκ

)
< k. Let Vκ,1, Vκ,2, . . . , Vκ,p ⊆ V \ Vκ be all the

p > 0 equivalence classes (subsets of nodes) in Π=
V \Vκ,−Vκ such that |Vκ,1| = |Vκ,2| =

· · · = |Vκ,p| = µ
(
DV \Vκ,−Vκ

)
. Since Vκ ⊂ Vopt, we have

Π=
V \Vopt,−Vopt

≺r Π=
V \Vκ,−Vκ

(in Corollary 16, set V2 = Vopt and V1 = Vκ)

⇒ k≤µ
(
DV \Vopt,−Vopt

)
≤ µ

(
DV \Vκ,−Vκ

)
≤

by (Equation 3.1)

|Z| ≤ |Vκ,p| = µ
(
DV \Vκ,−Vκ

)

Thus, µ
(
DV \Vκ,−Vκ

)
≥ k contradicting our assumption of µ

(
DV \Vκ,−Vκ

)
< k.

q

Lemma 18 (Proof of time complexity) Algorithm I runs in O
(
n4
)

time.

Proof. There are n choices for the for loop in Step 3. For each such choice, we analyze the

execution of the while loop in Step 3.2. The running time in each iteration of the while loop

is dominated by the time taken to compute Π=
V \(V ′∪ (∪`t=1Vt) ),−V ′∪ (∪`t=1Vt)

from

Π=
V \V ′,−V ′ . Suppose that ∪`t=1Vt =

{
vi1 , vi2 , . . . , vip

}
. By Corollary 16,
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Π=
V \(V ′∪{vi1 ,vi2 ,...,vip−1,vip}),−V ′∪{vi1 ,vi2 ,...,vip−1,vip} ≺r Π=

V \(V ′∪{vi1 ,vi2 ,...,vip−1}),−V ′∪{vi1 ,vi2 ,...,vip−1}

≺r . . . ≺r Π=
V \(V ′∪{vi1 ,vi2}),−V ′∪{vi1 ,vi2}

≺r Π=
V \(V ′∪{vi1}),−V ′∪{vi1}

≺r Π=
V \V ′,−V ′

Thus, it follows that the total time to execute all iterations of the while loop for a specific

choice of vi in Step 3 is of the order of n times the time taken to solve a problem of the following

kind:

for a subset of nodes ∅ ⊂ V1 ⊂ V , given Π=
V \V1,−V1

and a node vj ∈ V \ V1, compute

Π=
V \(V1∪{vj}),−(V1∪{vj}).

Since Π=
V \(V1∪{vj}),−(V1∪{vj}) is a refinement of Π=

V \V1,−V1
by Corollary 16, we can use the follow-

ing simple strategy. For every set S ∈ Π=
V \V ′,−V ′ , we split S \ {vj} = {vi1 , vi2 , . . . , vis} into two

or more parts, if needed, by doing a bucket-sort (with n bins) in O(n |S|) time on the sequence

of values distvi1 ,vj , distvi2 ,vj , . . . ,distvis ,vj ,. The total time taken for all sets in Π=
V \V ′,−V ′ is thus∑

S∈Π=
V \V ′,−V ′

O (n |S|) = O
(
n2
)
. q

This completes the proof for Adim≥k. Now we consider the claim for Adim. Obviously,

Adim can be solved in O
(
n5
)

time by solving Adim≥k for k = n− 1, n− 2, . . . , 1 in this order

and selecting the largest k as kopt for which L≥kopt < ∞. However, we can modify the steps of

Algorithm I directly to solve Adim in O
(
n4
)

time, as shown in Algorithm II.

Algorithm II: O
(
n4
)

time deterministic algorithm for Adim

(changes from Algorithm-I are shown enclosed in )

1. Compute di for all i = 1, 2, . . . , n in O
(
n3
)

time using Floyd-Warshall algorithm (27, p. 629)
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2. V̂ ≥kopt ← ∅ ; k̂opt ← 0

3. for each vi ∈ V do (∗ we guess vi to belong to V ≥kopt ∗)

3.1 V ′ = {vi}

3.2 while
(
V \ V ′ 6= ∅

)
do

3.2.1 compute µ
(
DV \V ′,−V ′

)
3.2.2 if

(
µ
(
DV \V ′,−V ′

)
> k̂opt

)
3.2.3 then k̂opt ← µ

(
DV \V ′,−V ′

)
; V̂ ≥kopt ← V ′

3.2.4 else let V1, V2, . . . , V` be the only ` > 0 equivalence classes (subsets of nodes)

in Π=
V \V ′,−V ′ such that |V1| = |V2| = · · · = |V`| = µ

(
DV \V ′,−V ′

)
3.2.5 V ′ ← V ′ ∪

(
∪`t=1Vt

)
4. return k̂opt and V̂ ≥kopt as our solution

The proof of correctness is very similar (and, in fact simpler due to elimination of some

cases) to that of Adim≥k.

(b) Our solution is the obvious randomization of Algorithm I (for Adim≥k) or Algorithm-II

(for Adim) as shown below.

Algorithm III (resp. Algorithm-IV): O
(
n4 logn

k

)
time randomized algorithm for Adim≥k (resp. Adim)

1. Compute di for all i = 1, 2, . . . , n in O
(
n3
)

time using Floyd-Warshall algorithm

2. L̂≥kopt ←∞ ; V̂ ≥kopt ← ∅ (for Adim≥k)

or

V̂ ≥kopt ← ∅ ; k̂opt ← 0 (for Adim)
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3. repeat
⌈

2n lnn
k

⌉
times

3.1 select a node vi uniformly at random from the n nodes

3.2 execute Step 3.1 and Step 3.2 (and its sub-steps) of Algorithm I (for Adim≥k)

or

execute Step 3.1 and Step 3.2 (and its sub-steps) of Algorithm II (for Adim)

4. return the best of all solutions found in Step 3

The success probability p is given by

p = Pr
[
vi ∈ V ≥kopt in at least one of the

⌈
2n lnn
k

⌉
iterations

]
= 1− Pr

[
vi /∈ V ≥kopt in each of the

⌈
2n lnn
k

⌉
iterations

]
≥ 1−

(
1− k

n

)d 2n lnn
k e > 1− 1

e2 lnn = 1− 1
n2

3.4 Proof of Theorem 14

(a) Adim=k trivially belongs to NP for any k, thus we need to show that it is also NP-hard.

The standard NP-complete minimum dominating set ( Mds) problem for a graph is defined

as follows (29). Our input is a connected undirected unweighted graph G = (V,E). A subset of

nodes V ′ ⊂ V is called a dominating set if and only if every node in V \ V ′ is adjacent to some

node in V ′. The objective of Mds is to find a dominating set of nodes of minimum cardinality.

Let ν(G) denote the cardinality of a minimum dominating set for a graph G. It is well-known

that the Mds and Sc problems have precisely the same approximability via approximation-

preserving reductions in both directions and, in particular, there exists a standard reduction

from Sc to Mds as follows. Given an instance U = {a1, a2, . . . , an} and S1, S2, . . . , Sm ⊆ U

of Sc, we create the following instance G1 = (V1, E1) of Mds. V1 has an element node vai
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for every element ai ∈ U and a set node vSj for every set Sj with j ∈ {1, 2, . . . ,m}. There are

two types of edges in E1. Every set node vSj has an edge to every other set node vS` and the

collection of these edges is called the set of clique edges. Moreover, a set node vSj is connected

to an element node vai if and only if ai ∈ Sj and the collection of these edges is called the set

of membership edges. A standard straightforward argument shows that I ⊂ {1, 2, . . . ,m} is a

solution of Sc if and only if the collection of set nodes { vSi | i ∈ I } is a solution of Mds on

G1 and thus opt Sc = ν (G1).

For the purpose of our NP-hardness reduction, it would be more convenient to work with

a restricted version of Sc known as the exact cover by 3-sets ( X3c) problem. Here we have

exactly n elements and exactly n sets where n is a multiple of three, every set contains exactly

3 elements and every element occurs in exactly 3 sets. Obviously we need at least n
3 sets to

cover all the n elements. Letting opt X3c to denote the number of sets in an optimal solution of

X3c, it is well-known that problem of deciding whether opt X3c = n
3 is in fact NP-complete.

Let n1 =
−6k+

√
36k2+24(n−k)

4 be the real-valued solution of the quadratic equation

n1

(
2k +

2n1

3

)
+ k = n

Note that since k ≤ nε for some constant ε < 1
2 , we have n1 = Θ (

√
n ), i.e. , n and n1 are

“polynomially related”.

We assume without loss of generality that n1 is an even integer, and start with an instance

of X3c of n1
2 elements and transform it to an instance graph G1 = (V1, E1) having n1 nodes of
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Figure 15. Illustration of the NP-hardness reduction in Theorem 14(a). Only a part of the
graph G is shown for visual clarity.

Mds via the reduction outlined before. Since n1
2 is polynomially related to n, such an instance

of X3c is NP-complete with respect to n being the input size. We reduce G1 to an instance

G = (V,E) of Adim=k in polynomial time as follows (see Fig. Figure 15 for an illustration):

• We “clone” each element node vaj ∈ V1 to get 2k + 2n1
3 copies, i.e. , every node vaj is

replaced by 2k + 2n1
3 new nodes vaj ,1, vaj ,2, . . . , vaj ,2k+

2n1
3

,. We refer to these nodes as
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clones of the element node vaj (or, sometimes simply as element-clone nodes). There are

precisely n1

(
k + n1

3

)
such nodes.

• We “clone” each set node vSj ∈ V1 to get 2k+ 2n1
3 copies, i.e. , every node vSj is replaced

by 2k+ 2n1
3 new nodes vSj ,1, vSj ,2, . . . , vSj ,2k+

2n1
3

,. We refer to these nodes as clones of the

set node vSj (or, sometimes simply as set-clone nodes). There are precisely n1

(
k + n1

3

)
such nodes.

• We add k new nodes u1, u2, . . . , uk. We refer to these nodes as clique nodes.

• We add an edge between every pair of clique nodes ui and uj . We refer to these edges as

clique edges. There are precisely
(
k
2

)
such edges.

• We add an edge between every clique node and every non-clique node, i.e. , we add

every edge in the set

{{
ui, vaj ,`

}
| 1 ≤ i ≤ k, 1 ≤ j ≤ n1

2
, 1 ≤ ` ≤ 2k +

2n1

3

}
⋃ {{

ui, vSj ,`
}
| 1 ≤ i ≤ k, 1 ≤ j ≤ n1

2
, 1 ≤ ` ≤ 2k +

2n1

3

}

We refer to these edges as the partition-fixing edges. There are precisely kn1

(
k + n1

3

)
such edges.

• We add an edge between every pair of distinct element-clone nodes vaj ,` and vaj′ ,`′ . We

refer to these as the element-clone edges. There are precisely
(

2k+(2n1)/3
2

)
such edges.
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• For every element ai and every set Sj such that ai /∈ Sj , we add the following
(
2k + 2n1

3

)2
edges: {

vSj ,`, vai,p
}

for 1 ≤ `, p ≤ 2k +
2n1

3

We refer to these edges as the non-member edges corresponding to the element node ai

and the set node Sj . There are precisely 3n1
2

(
2k + 2n1

3

)2
such edges.

Note that G has precisely n1

(
2k + 2n1

3

)
+k = n nodes and thus our reduction is polynomial time

in n. Since any clique node is adjacent to every other node in G, it follows that diam(G) = 2.

We now show the validity of our reduction by showing that

(?) ν (G1) =
n1

3
if and only if L=k

opt ≤
n1

3

Proof of ν (G1) = n1
3 ⇒ L=k

opt ≤ n1
3

Consider an optimal solution V ′1 ⊂
{
vS1 , vS2 , . . . , vSn1

}
of Mds on G1 with ν (G1) = |V ′1 | =

n1
3 . We now construct a solution V ′ ⊂ V of Adim=k on G by setting V ′ =

{
vSj ,1 | vSj ∈ V ′1

}
.

Note that |V ′| = |V ′1 | = n1
3 . We claim that V ′ is a valid solution of Adim=k by showing that

(a) {u1, u2, . . . , uk} ∈ Π=
V \V ′,−V ′ and

(b) any other equivalence class in Π=
V \V ′,−V ′ has at least k nodes.

To prove (a), consider a clique node ui and any other non-clique node. Then, the following

cases apply:
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• Suppose that the non-clique node is a element-clone node vaj ,` ∈ V \ V ′ for some j and

`. Since V ′1 is a solution of Mds on G1, there exists a set node vSp ∈ V ′1 such that{
vSp , vaj

}
∈ E1 and consequently

{
vSp,1, vaj ,`

}
/∈ E. This implies that there exists a node

vSp,1 ∈ V ′ such that 1 = distui,vaj,` 6= distvSp,1,vaj,` , and therefore vaj ,` cannot be in the

same equivalence class with ui.

• Suppose that the non-clique node is a set-clone node vSj ,p ∈ V \ V ′. Pick any set-clone

node vS`,1 ∈ V ′. Then, 1 = distui,vSj,p 6= distvSj,p,vS`,1 , and therefore vSj ,p cannot be in

the same equivalence class with ui.

To prove (b), note the following:

• Since diam(G) = 2, distvSi,p,vSj,q = 2 for any two distinct set-clone nodes vSi,p and vSj ,q,

and thus all the set nodes in V \ V ′ belong together in the same equivalence class in

Π=
V \V ′,−V ′ . There are at least n1

(
k + n1

3

)
− n1

3 > k such nodes in V \ V ′. Thus, any

equivalence class that contains these set-clone nodes cannot have less than k nodes.

• Consider now an equivalence class in Π=
V \V ′,−V ′ that contains a copy vai,j of the element

node vai for some i and j. Consider another copy vai,` of the element node vai for

some ` 6= j. For any set node vSp,1 ∈ V ′, if ai /∈ Sp then distvSp,1,vai,j = distvSp,1,vai,` = 1,

whereas if ai ∈ Sp then, since diam(G) = 2, it follows that distvSp,1,vai,j = distvSp,1,vai,` = 2.

Thus, any equivalence class that contains at least one clone of an element node must

contain all the 2k + 2n1
3 > k clones of that element node and thus such an equivalence

class cannot have a number of nodes that is less than k.
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Proof of L=k
opt ≤ n1

3 ⇒ ν (G1) = n1
3

Since we know that ν (G1) is always at least n1
3 , it suffices to show that L=k

opt ≤ n1
3 ⇒

ν (G1) ≤ n1
3 . Consider an optimal solution V =k

opt ⊂ V with L=k
opt ≤

∣∣V =k
opt

∣∣ = n1
3 . Since V =k

opt is a

solution of Adim=k on G, there exists a subset of nodes, say V̂ ⊂ V \ V =k
opt , such that |V̂ | = k

and V̂ ∈ Π=
V \V =k

opt ,−V =k
opt

.

Proposition 3 V̂ does not contain any set-clone or element-clone nodes and thus

V̂ = {u1, u2, . . . , uk}.

Proof. Suppose that V̂ contains at least one element-clone node vai,j for some i and j. But,

V \ V =k
opt contains at least 2k + 2n1

3 −
n1
3 − 1 > k other clones of the element node ai and

all these clones must belong together with vai,j in the same equivalence class. This implies

|V̂ | ≥ 2k + 2n1
3 −

n1
3 > k, a contradiction.

Similarly, suppose that V̂ contains at least one set-clone node vSi,j for some i and j. But,

V \ V =k
opt contains at least 2k + 2n1

3 −
n1
3 − 1 > k other clones of the set node Si and all

these clones must belong together with vSi,j in the same equivalence class. This implies |V̂ | ≥

2k + 2n1
3 −

n1
3 > k, a contradiction. q

Proposition 4 V =k
opt does not contain two or more clones of the same set node.

Proof. Suppose that V =k
opt contains two set-clone nodes vSj ,p and vSj ,q of the same set node

vSj . But, V \ V =k
opt contains at least 2k + 2n1

3 −
n1
3 − 1 > k other clones of the element node

ai and all these clones must belong together in the same equivalence class S. If we remove
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vSj ,p from V =k
opt then vSj ,p gets added to this equivalence class. Thus, such a removal produced

another valid solution but with one node less than Lopt, contradicting the optimality of L=k
opt. q

Proposition 5 V =k
opt does not contain any element-clone node.

Proof. Suppose that V =k
opt contains at least one element-clone node and thus at most n1

3 − 1

set-clone nodes. Note that V \ V =k
opt contains at least 2k + 2n1

3 −
n1
3 clones of every element

node ai. Consider an element-clone node vai,p ∈ V \ V =k
opt and a clique node uj . Since V̂ =

{u1, u2, . . . , uk} ∈ Π=
V \V =k

opt ,−V =k
opt

, there must be a node in V =k
opt such that the distance of this

node to uj is different from the distance to vai,p. Such a node in V =k
opt cannot be an element-

clone node, say va`,q since distvai,p,va`,q = distuj ,va`,q = 1. Since there is an edge between every

set-clone node and every clique node, such a node must be a set-clone node, say vSr,s for some

r and s, such that distvai,p,vSr,s = 2, i.e. , ai ∈ Sr. Since every set in X3c contains exactly

3 elements and 3×
(
n1
3 − 1

)
< n1, there must then exist an element-clone node vai,p such that

the distance of vai,p to any node in V =k
opt is exactly the same as the distance of uj to that node

in V =k
opt . This implies vai,p ∈ V̂ , contradicting Proposition 3. q

By Proposition 4 and Proposition 5, V =k
opt contains exactly one clone of a subset of set

nodes. Without loss of generality, assume that V =k
opt =

{
vSj ,1 | j ∈ J, J ⊂

{
1, 2, . . . , n1

2

}}
and

let V ′1 =
{
vSj | vSj ,1 ∈ V =k

opt

}
. Note that |V ′1 | =

∣∣V =k
opt

∣∣. We are now ready to finish our proof
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by showing V ′1 is indeed a valid solution of Mds on G1. Suppose not, and let vai be an

element-node that is not adjacent to any node in V ′1 . Then,

∀ vSj ∈ V ′1 :
{
vai , vSj

}
/∈ E1 ⇒ ∀ vSj ,1 ∈ V =k

opt :
{
vai,1, vSj ,1

}
∈ E

⇒ ∀ vSj ,1 ∈ V =k
opt : distvai,1,vSj,1 = 1 ⇒ vai,1 ∈ V̂

which contradicts Proposition 3.

(b) The proof is similar to that of (a) but this time we start with a general version of Sc

as opposed to the restricted X3c version, and show that the reduction is approximation-

preserving in an appropriate sense. In the sequel, we use the standard notation poly(n) to

denote a polynomial nc of n (for some constant c > 0). We recall the following details of

the inapproximability reduction of Feige in (30). Given an instance formula φ of the standard

Boolean satisfiability problem ( Sat), Feige reduces φ to an instance U , S1, S2, . . . , Sm of Sc

(with m = poly(n)) in O(nlog logn) time such that the following properties are satisfied for any

constant 0 < ε < 1:

• For some Q > 0, either opt Sc = n
Q or opt Sc >

(
n
Q

)
(1− ε) lnn.

• The reduction satisfies the following completeness and soundness properties:

(completeness) If φ is satisfiable then opt Sc = n
Q .

(soundness) If φ is not satisfiable then opt Sc >
(
n
Q

)
(1− ε) lnn.
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Since m = poly(n), by adding duplicate copies of a set, if necessary, we can ensure that

m = nc − n for some constant c ≥ 1. Our reduction from Sc to Mds to Adim=k is same as

in (a) except that some details are different, which we show here.

• We start with an instance of Sc as given by Feige in (30) with n1 elements and m =

(n1)c − n1 sets, where n1 =

(
−k+
√
k2+2(n−k)

2

)1/c

is a real-valued solution of the equation

(n1) 2c + k(n1)c − n−k
2 = 0. Note that since k ≤ nε for some constant ε < 1

2 , we have

n1 = Θ
(
n1/(2 c)

)
, i.e. , n and n1 are polynomially related.

• We make 2(n1)c + 2k copies of each element node and each set node as opposed to 2k + 2n1
3

copies that we made in the proof of (a). Note that G has again precisely (n1)c (2k + 2(n1)c )+

k = n nodes.

• Let δ > 0 be the constant given by δ = lnn
(1−ε) lnn1

. Our claim (?) in the proof of (a) is now

modified to

(?)

(completeness) if ν (G1) = n1
Q then L=k

opt ≤ n1
Q

(soundness) if ν (G1) >
(
n1
Q

)
(1− ε) lnn1

then L=k
opt >

(
n1
Q

)
(1− ε) lnn1 =

(
n1
Q

)
1
δ lnn

• Our proof of the completeness claim follows the “Proof of ν (G1) = n1
3 ⇒ L=k

opt ≤ n1
3 ” in the

proof of (a) with the obvious replacement of n1
3 by n1

Q .

• Note that our soundness claim is equivalent to its contra-positive

if L=k
opt ≤

(
n1

Q

)
(1− ε) lnn1 then ν (G1) ≤

(
n1

Q

)
(1− ε) lnn1
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and the proof of this contra-positive follows the “Proof of L=k
opt ≤ n1

3 ⇒ ν (G1) = n1
3 ” in the

proof of (a). In the proof, the quantity 2k+ 2n1
3 corresponding to the number of copies for each

set and element node needs to be replaced by 2(n1)c + 2k; note that (2(n1)c + 2k)− n1 � k.

(c) Since k = n − c for some constant c, Π=
V \V =k

opt ,−V =k
opt

contains a single equivalence class

V ′ ⊂ V such that |V ′| = k. Thus, we can employ the straightforward exhaustive method of

selecting every possible subset V ′ of k nodes to be in Π=
V \V ′,−V ′ and checking if the chosen

subset of nodes provide a valid solution. There are
(
n
k

)
< nc such possible subsets and therefore

the asymptotic running time is O
(
nc + n3

)
which is polynomial in n. Note that for this case

L=k
opt = c if a solution exists.

3.5 Proof of Theorem 15

(a) Note that trivially L=1
opt ≤ n − 1 and thus V =1

opt 6= ∅. Our algorithm, shown as Algo-

rithm V, uses the greedy logarithmic approximation of Johnson (31) for Sc that selects, at

each successive step, a set that contains the maximum number of elements that are still not

covered.

Algorithm V: O
(
n3
)
-time (1 + ln(n− 1) )-approximation algorithm for Adim=1.

1. Compute di for all i = 1, 2, . . . , n in O
(
n3
)

time using Floyd-Warshall algorithm.

2. L̂=1
opt ←∞ ; V̂ =1

opt ← ∅

3. for each node vi ∈ V do (∗ we guess the set {vi} to belong to Π=
V \V =1

opt ,−V
=1
opt
∗)

3.1 create the following instance of Sc containing n− 1 elements and n− 1 sets:

U =
{
avj | vj ∈ V \ {vi}

}
,

Svj =
{
avj
}
∪
{
av` | distvi,vj 6= distv`,vj

}
for j ∈ {1, 2, . . . , n} \ {i}
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3.2 if ∪j∈{1,2,...,n}\{i}Svj = U then

3.2.1 run the greedy approximation algorithm (31) for this instance of Sc

giving a solution I ⊆ {1, 2, . . . , n} \ {i}

3.2.2 V ′ = { vj | j ∈ I }

3.2.3 if
(
|V ′| < L̂=1

opt

)
then L̂=1

opt ← |V ′| ; V̂ =1
opt ← V ′

4. return L̂=1
opt and V̂ =1

opt as our solution

Lemma 19 (Proof of correctness) Algorithm V returns a valid solution for Adim=1.

Proof. Suppose that our algorithm returns an invalid solution in the iteration of the for loop

in Step 3 when vi is equal to v` for some v` ∈ V . We claim that this cannot be the case since

{v`} ∈ Π=
V \V ′,−V ′ . Indeed, since I is a valid solution of the Sc instance, for every j /∈ {`} ∪ I,

the following holds:

∃ t ∈ I : avj ∈ Svt ⇒ ∃ vt ∈ V ′ : distv`,vt 6= distvj ,vt

and thus v` cannot be together with any other node in any equivalence class in Π=
V \V ′,−V ′ . q

Lemma 20 (Proof of approximation bound) Algorithm V solves Adim=1 with an ap-

proximation ratio of 1 + ln(n− 1).

Proof. Fix any optimal solution V =1
opt . Since µ

(
DV \V =1

opt ,−V =1
opt

)
= 1, {v`} ∈ Π=

V \V =1
opt ,−V =1

opt
for

some v` ∈ V . Consider the iteration of the for loop in Step 3 when vi is equal to v`. We now

analyze the run of this particular iteration, and claim that the set-cover instance created during
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this iteration satisfies opt Sc ≤
∣∣V =1

opt

∣∣ = L=1
opt. To see this, construct the following solution of

the set-cover instance from Vopt containing exactly Lopt sets:

vi ∈ V =1
opt ≡ i ∈ I

To see that this is indeed a valid solution of the set-cover instance, consider any avj ∈ U =

{av1 , av2 , . . . , avn} \ {av`}. Then, the following cases apply showing that avj belongs to some

set selected in our solution of Sc:

• if j ∈ I then avj ∈ Svj and Svj is a selected set in the solution.

• if j /∈ I then vj ∈ V \ Vopt ⇒ ∃ vt ∈ Vopt : distv`,vt 6= distvj ,vt ⇒ ∃ t ∈ I : avj ∈ Svt .

Using the approximation bound of the algorithm of (31) it now follows that the quality of our

solution L̂=1
opt satisfies

L̂=1
opt =

∣∣∣V̂ =1
opt

∣∣∣ = |I| < (1 + ln(n− 1) )opt Sc ≤ (1 + ln(n− 1) )L=1
opt

q

Lemma 21 (Proof of time complexity) Algorithm V runs in O
(
n3
)

time.

Proof. There are a total of n instances of set cover that we need to build in Step 3.1 and

solve by the greedy heuristic in Step 3.2.1. Building the set-cover instance can be trivially done

in O
(
n2
)

time by comparing distvi,vj for all appropriate pairs of nodes vi and vj . Since the
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set-cover instance in Step 3.1 has n − 1 sets each having no more than n − 1 elements, each

implementation of the greedy heuristic in Step 3.2.1 takes O
(
n2
)

time. q

(b) Let vi be the node of degree 1. Let v` be the unique node adjacent to vi ( i.e. , {vi, v`} ∈ E).

Consider the following solution of Adim=1: V ′ = {vi}. We claim that is a valid solution

of Adim=1 by showing that {v`} ∈ Π=
V \V ′,−V ′ . Consider any node vj ∈ V \ {vi, v`}, Then,

1 = distv`,vi 6= distvj ,vi .

Figure 16. Illustration of the proof of Theorem 15(c). Edges marked by ××× cannot exist. No
node in Nbr (v`) \ {vi, vj} can have an edge to both vi and vj .

(c) Since G does not contain a 4-cycle, diam(G) ≥ 2. Thus, there exists two nodes vi, vj ∈ V

such that distvi,vj = 2. Let v` be a node at a distance of 1 from both vi and vj on a shortest

path between vi and vj (see Fig. Figure 16). Consider the following solution of Adim=1:
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V ′ = {vi, vj}. Note that v` ∈ V \ V ′. We claim that this is a valid solution of Adim=1 by

showing that {v`} ∈ Π=
V \V ′,−V ′ ( i.e. , no node vp ∈ V \ {vi, vj , v`} can belong together with v`

in the same equivalence class of Π=
V \V ′,−V ′) in the following manner:

• If vp ∈ Nbr (vi) \ {v`} then distv`,vj = 1 but distvp,vj 6= 1 since G has no 4-cycle (see the

edges marked ××× in Fig. Figure 16).

• If vp ∈ Nbr (vj) \ {v`} then distv`,vi = 1 but distvp,vi 6= 1 since G has no 4-cycle (see the

edges marked ××× in Fig. Figure 16).

• If vp ∈ Nbr (v`) \ {vi, vj} then vp cannot be adjacent to both vi and vj since G does not

contain a 4-cycle. This implies that distv`,vi = distv`,vj = 1 but at least one of distvp,vi

and distvp,vj is not equal to 1.

• If vp is any node not covered by the above cases, then distvp,vi > 1 but distv`,vi = 1.



CHAPTER 4

CONCLUSION

In this thesis we have examined various techniques for quantifying loss of privacy in net-

worked and multi-agent systems. In the first part of the thesis we investigated approximate

privacy model. We identified a protocol that provides constant average privacy approximation

ratio for tiling functions. We also provided calculations of average and worst case privacy ap-

proxixation ratio of bisection protocols for non-tiling functions. There are some natural research

problems for the geometric privacy model discussed that needs further investigation. Examples

of such questions include:

I Can we identify other non-tiling classes of functions for which good approximate-privacy

preserving protocols are possible?

I For three or more party communications, can we design good approximate-private proto-

cols for some proper sub-classes of tiling functions?

I Can we identify and formalize the relationship between approximate privacy, differential

privacy (4) and pan-privacy (32) models?

In the second part of the thesis, we formalized problems concerning a privacy measure for

quantifying privacy in large networks. Prior to our work, known results for these privacy mea-

sures only included some heuristic algorithms with no provable guarantee on performances such

as in (14), or algorithms for very special cases. In fact, it was not even known if any version of

66



67

these related computational problems is NP-hard. Our work provides the first non-trivial com-

putational complexity results for effective computation of these measures. Theorem 13 shows

that both Adim and Adim≥k are provably computationally easier problems than Adim=k. In

contrast, Theorem 14(a)–(b) and Theorem 15 show that Adim=k is in general computationally

hard but admits approximations or exact solution for specific choices of k or graph topology.

We believe that our results will stimulate further research on quantifying and computing pri-

vacy measures for networks. In particular, our results raise the following interesting research

questions:

I We have only provided a logarithmic approximation algorithm for Adim=1. Is it possible

to design a non-trivial approximation algorithm for Adim=k for k > 1 ? We conjecture

that a O(log n)-approximation is possible for Adim=k for every fixed k.

I We have provided a logarithmic inapproximability result for Adim=k for every k roughly

up to
√
n. Can this approximability result be further improved when k is not a constant

? We conjecture that the inapproximability factor can be further improved to Ω (nε) for

some constant 0 < ε < 1 when k is around
√
n.
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APPENDIX

ADDITIONAL PRIVACY MEASURES

A.1 Differential Privacy

The differential privacy model was introduced by C. Dwork in (4). This model arose due to

difficulties in preserving privacy in statistical databases. Consider a statistical database that

contains information obtained from a survey of some population. The differntial privacy model

allows a third party to learn the properties of the population but at the same time preserves

the privacy of individuals that participated in the survey.

Definition 22 (4) A randomized function K gives ε-differential privacy if for all data sets D1

and D2 differing on at most one row, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ eε × Pr[K(D2) ∈ S]

Differential privacy can be achieved by computing the correct answer to a query and adding

a noise drawn from the so-called Laplace(f(ε)) distribution for some appropriate function f .

This approach is sufficient to handle individual queries. In (4) the author also provides a

mechanism for ensuring differential privacy in case of adaptive queries.

McGregor et al. (33) introduced and investigated the differential privacy model in a 2-party

communication setting. In such a setting the two parties want to find out the hamming distance

between the n bit inputs that they hold. This setting is defined in (33) as give below:
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• A mechanism M (on Σn) is a family of probability distributions
{
µx : x ∈ Σn

}
on R. Such

a mechanism M is ε-differentially private if and only if the following condition holds:

∀x, x ∈ Σn :
∣∣x− x∣∣

H
= 1 and for all measurable subsets S of R : µx(S) ≤ eεµx(S)

where the notation
∣∣x− x∣∣

H
denotes the Hamming distance between x and x′.

• VIEW A
P (x, y) is the joint probability distribution over x, y ∈ Σn, the transcript of a

protocol P and the private randomness of party A (the probability space is private ran-

domness for both parties). VIEW B
P (x, y) is defined in a similar manner with respect to

party B.

Then, a protocol P has ε-differential privacy if and only if both of the following conditions hold:

(a) For all x ∈ Σn, VIEW A
P (x, y) is ε-differential private.

(b) For all y ∈ Σn, VIEW B
P (x, y) is ε-differential private.

A major contrition of (33) is a lower bound on the least additive error of any differentially

private protocol that is used to compute the hamming distance.

Theorem 23 (33) Let P (x, y) be a randomized protocol with ε-differential privacy for inputs

x, y ∈
{

0, 1
}n

, and let δ > 0. Then, with probability at least 1 − δ over x, y ∈ {0, 1}n and the

coin tosses of P , party B’s output differs from 〈x, y〉 by at least ∆ = Ω

( √
n

log n
× δ

eε

)
.

In (33) the authors state that there is a connection between differential privacy model and

pan-privacy model defined in (32).
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